电负载预测已成为电力系统操作的组成部分。深入学习模型为此目的被发现。然而,为了达到期望的预测准确性,它们需要大量的培训数据。分享负载预测的各个家庭的电力消耗数据可能会损害用户隐私,并且在通信资源方面可能是昂贵的。因此,诸如联邦学习的边缘计算方法正在为此目的获得更多重要性。这些方法可以利用数据,而无需集中存储它。本文评估了联合学习对单个房屋负荷的短期预测以及总负荷的表现。它通过将其与集中和局部学习方案进行比较来讨论该方法的优点和缺点。此外,提出了一种新的客户端聚类方法,以减少联合学习的收敛时间。结果表明,联合学习具有良好的性能,具有0.117kWh的最小根均匀误差(RMSE),为单独的负载预测。
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
负载预测在电力系统的分析和网格计划中至关重要。因此,我们首先提出一种基于联邦深度学习和非侵入性负载监测(NILM)的家庭负载预测方法。就我们所知,这是基于尼尔姆的家庭负载预测中有关联合学习(FL)的首次研究。在这种方法中,通过非侵入性负载监控将集成功率分解为单个设备功率,并且使用联合深度学习模型分别预测单个设备的功率。最后,将单个设备的预测功率值聚合以形成总功率预测。具体而言,通过单独预测电气设备以获得预测的功率,它可以避免由于单个设备的功率信号的强烈依赖性而造成的误差。在联邦深度学习预测模型中,具有权力数据的家主共享本地模型的参数,而不是本地电源数据,从而保证了家庭用户数据的隐私。案例结果表明,所提出的方法比直接预测整个汇总信号的传统方法提供了更好的预测效果。此外,设计和实施了各种联合学习环境中的实验,以验证该方法的有效性。
translated by 谷歌翻译
负载预测是能源行业中执行的一项重要任务,以帮助平衡供应并保持电网的稳定负载。随着供应过渡向不太可靠的可再生能源产生,智能电表将证明是促进这些预测任务的重要组成部分。但是,在隐私意识的消费者中,智能电表的采用率很低,这些消费者害怕侵犯其细粒度的消费数据。在这项工作中,我们建议并探索一种基于联合学习的方法(FL)方法,以分布式协作方式培训预测模型,同时保留基础数据的隐私。我们比较了两种方法:FL和聚集的变体FL+HC与非私有的,集中的学习方法和完全私人的本地化学习方法。在这些方法中,我们使用RMSE和计算效率测量模型性能。此外,我们建议FL策略之后是个性化步骤,并表明可以通过这样做可以提高模型性能。我们表明,FL+HC紧随其后的是个性化可以实现$ \ sim $ 5 \%的模型性能提高,而与本地化学习相比,计算$ \ sim $ 10倍。最后,我们提供有关私人汇总预测的建议,以构建私人端到端负载预测应用程序。
translated by 谷歌翻译
包含间歇性和可再生能源的含量增加了电力系统需求预测的重要性。由于它们提供的测量粒度,智能电表可以在需求预测中发挥关键作用。消费者的隐私问题,公用事业和供应商不愿与竞争对手或第三方共享数据,以及监管限制是一些限制智能米预测面。本文介绍了使用智能电表数据作为前一个约束的解决方案的短期需求预测的协作机器学习方法。隐私保存技术和联合学习使能够确保消费者对两者的机密性,它们的数据,使用它生成的模型(差异隐私),以及通信均值(安全聚合)。评估的方法考虑了几种方案,探讨了传统的集中方法如何在分散,协作和私人系统的方向上投射。在评估中获得的结果提供了几乎完美的隐私预算(1.39,$ 10E ^ {5} $)和(2.01,$ 10e ^ { - 5} $),具有可忽略不计的性能妥协。
translated by 谷歌翻译
基于机器学习(ML)的智能仪表数据分析对于先进的计量基础设施(AMI)中的能源管理和需求 - 响应应用非常有前途。开发AMI的分布式ML应用程序中的一个关键挑战是保留用户隐私,同时允许有效的最终用户参与。本文解决了这一挑战,并为AMI中的ML应用程序提出了隐私保留的联合学习框架。我们将每个智能仪表视为托管使用中央聚合器或数据集中器的信息的ML应用程序的联邦边缘设备。而不是传输智能仪表感测的原始数据,ML模型权重被传送到聚合器以保护隐私。聚合器处理这些参数以设计可以在每个边缘设备处替换的鲁棒ML模型。我们还讨论了在共享ML模型参数的同时提高隐私和提高通信效率的策略,适用于AMI中的网络连接相对较慢。我们展示了在联合案例联盟ML(FML)应用程序上的提议框架,其提高了短期负荷预测(STLF)。我们使用长期内存(LSTM)经常性神经网络(RNN)模型进行STLF。在我们的体系结构中,我们假设有一个聚合器连接到一组智能电表。聚合器使用从联合智能仪表接收的学习模型渐变,以生成聚合,鲁棒RNN模型,其提高了个人和聚合STLF的预测精度。我们的结果表明,通过FML,预测精度增加,同时保留最终用户的数据隐私。
translated by 谷歌翻译
随着对数据隐私和所有权的越来越关注,近年来见证了机器学习(ML)的范式转移。新兴的范式,联合学习(FL)引起了人们的关注,并已成为机器学习实现的新设计。 FL可以在中央服务器的协调下启用数据筒仓的ML模型培训,从而消除了开销,而无需共享原始数据。在本文中,我们对FL范式进行了综述,尤其是比较类型,网络结构和全局模型聚合方法。然后,我们对能源域中的FL应用进行了全面审查(请参阅本文的智能电网)。我们提供FL的主题分类,以解决各种与能源有关的问题,包括需求响应,识别,预测和联合优化。我们详细描述了分类法,并以讨论各个方面的讨论,包括其能源信息学应用程序中的挑战,机会和局限性,例如能源系统建模和设计,隐私和进化。
translated by 谷歌翻译
专门针对联合学习(SDAGFL)的定向无环图(SDAGFL)是一个新的联合学习框架,它通过有向的无循环图分布式分类帐技术(DAG-DLT)从设备中更新模型。 SDAGFL具有个性化的优势,可抵抗完全分散的联邦学习中的单点失败和中毒攻击。由于这些优点,SDAGFL适用于在设备通常由电池供电的物联网场景中进行联合学习。为了促进SDAGFL在物联网中的应用,我们提出了一个基于ESDAGFL的基于事件触发的通信机制的能量优化的。在ESDAGFL中,仅当新模型发生显着更改时才会广播。我们在莎士比亚和歌德的作品中从群集的合成女性数据集中评估了eSDAGFL的合成女性数据集和数据集。实验结果表明,与SDAGFL相比,我们的方法可以将能源消耗降低33 \%,并在训练准确性和专业化之间达到与SDAGFL相同的平衡。
translated by 谷歌翻译
智能仪表测量值虽然对于准确的需求预测至关重要,但仍面临一些缺点,包括消费者的隐私,数据泄露问题,仅举几例。最近的文献探索了联合学习(FL)作为一种有前途的隐私机器学习替代方案,该替代方案可以协作学习模型,而无需将私人原始数据暴露于短期负载预测中。尽管有着美德,但标准FL仍然容易受到棘手的网络威胁,称为拜占庭式攻击,这是由错误和/或恶意客户进行的。因此,为了提高联邦联邦短期负载预测对拜占庭威胁的鲁棒性,我们开发了一个最先进的基于私人安全的FL框架,以确保单个智能电表的数据的隐私,同时保护FL的安全性模型和架构。我们提出的框架利用了通过符号随机梯度下降(SignsGD)算法的梯度量化的想法,在本地模型培训后,客户仅将梯度的“符号”传输到控制中心。当我们通过涉及一组拜占庭攻击模型的基准神经网络的实验突出显示时,我们提出的方法会非常有效地减轻此类威胁,从而优于常规的FED-SGD模型。
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
通常利用机器学习方法并有效地将智能电表读数从家庭级别分解为设备级消耗,可以帮助分析用户的电力消耗行为并启用实用智能能源和智能网格申请。最近的研究提出了许多基于联邦深度学习(FL)的新型NILM框架。但是,缺乏综合研究,探讨了不同基于FL的NILM应用程序方案中的实用性优化方案和隐私保护方案。在本文中,我们首次尝试通过开发分布式和隐私的尼尔姆(DP2-NILM)框架来进行基于FL的NILM,重点关注实用程序优化和隐私保护,并在实用的NILM场景上进行比较实验基于现实世界的智能电表数据集。具体而言,在实用程序优化方案(即FedAvg和FedProx)中检查了两种替代联合学习策略。此外,DP2-NILM提供了不同级别的隐私保证,即联合学习的当地差异隐私学习和联合的全球差异隐私学习。在三个现实世界数据集上进行了广泛的比较实验,以评估所提出的框架。
translated by 谷歌翻译
联合学习提供了以分布式方式学习异质用户数据的能力,同时保留用户隐私。但是,当前的客户选择技术是偏见的来源,因为它歧视了缓慢的客户。对于初学者,它选择满足某些网络和系统特定标准的客户端,从而选择慢速客户端。即使将这些客户包括在培训过程中,他们要么踩踏培训,要么因太慢而从回合中完全掉下来。我们提出的想法希望通过查看智能客户的选择和调度技术来找到快速融合和异质性之间的绝佳位置。
translated by 谷歌翻译
Federated Learning (FL) has become a key choice for distributed machine learning. Initially focused on centralized aggregation, recent works in FL have emphasized greater decentralization to adapt to the highly heterogeneous network edge. Among these, Hierarchical, Device-to-Device and Gossip Federated Learning (HFL, D2DFL \& GFL respectively) can be considered as foundational FL algorithms employing fundamental aggregation strategies. A number of FL algorithms were subsequently proposed employing multiple fundamental aggregation schemes jointly. Existing research, however, subjects the FL algorithms to varied conditions and gauges the performance of these algorithms mainly against Federated Averaging (FedAvg) only. This work consolidates the FL landscape and offers an objective analysis of the major FL algorithms through a comprehensive cross-evaluation for a wide range of operating conditions. In addition to the three foundational FL algorithms, this work also analyzes six derived algorithms. To enable a uniform assessment, a multi-FL framework named FLAGS: Federated Learning AlGorithms Simulation has been developed for rapid configuration of multiple FL algorithms. Our experiments indicate that fully decentralized FL algorithms achieve comparable accuracy under multiple operating conditions, including asynchronous aggregation and the presence of stragglers. Furthermore, decentralized FL can also operate in noisy environments and with a comparably higher local update rate. However, the impact of extremely skewed data distributions on decentralized FL is much more adverse than on centralized variants. The results indicate that it may not be necessary to restrict the devices to a single FL algorithm; rather, multi-FL nodes may operate with greater efficiency.
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译
Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译
联合学习是一种在网络边缘训练机器学习模型的方法以及数据隐私问题。这种学习范式需要对设备异质性和数据异质性的鲁棒算法。本文提出MODFL作为联合学习框架,将模型分为配置模块和操作模块,从而实现了各个模块的联合学习。这种模块化方法使从一组异质设备以及用户产生的非IID数据中提取知识。该方法可以看作是通过个性化层FEDPER框架来解决数据异质性的范围的联合学习的扩展。我们表明,使用CNN的MODFL优于CIFAR-10和STL-10的非IID数据分区的FEDPER。我们在使用RNN的Hapt,RWHAR和WISDM数据集的时间序列数据上的结果尚无定论,我们认为所选数据集并未突出MODFL的优势,但在最坏的情况下,它和FedPer一样。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
联合学习可以使许多应用程序受益于大量潜在数据持有客户的分布式和私人数据集。但是,不同客户通常就可以从数据中学到的任务具有自己的特定目标。因此,使用元学习工具(例如多任务学习和转移学习)来支持联合学习,将通过让不同但相关任务的客户共享可以进一步更新和更新和相关任务的客户来帮助扩大联合学习的潜在应用程序。由每个客户为其特定任务量身定制。在联合的多任务学习问题中,应对每个客户的各个目标进行训练的深度神经网络模型,同时共享一些参数以提高概括性。我们建议训练一个深层的神经网络模型,其更广泛的层更接近输入,并且更具个性化的层贴在输出中。我们通过引入层类型(例如预训练,常见,特定于任务和个人层)来实现这一目标。我们提供仿真结果,以突出特定的方案,在这种情况下,基于元学习的联合学习被证明是有用的。
translated by 谷歌翻译
联合学习允许一组分布式客户端培训私有数据的公共机器学习模型。模型更新的交换由中央实体或以分散的方式管理,例如,由一个区间的。但是,所有客户端的强大概括都使得这些方法不合适,不合适地分布(非IID)数据。我们提出了一个统一的统一方法,在联合学习中的权力下放和个性化,该方法是基于模型更新的定向非循环图(DAG)。客户端代替培训单个全局模型,客户端专门从事来自其他客户端的模型更新的本地数据,而不是依赖于各自数据的相似性。这种专业化从基于DAG的沟通和模型更新的选择隐含地出现。因此,我们启用专业模型的演变,它专注于数据的子集,因此覆盖非IID数据,而不是在基于区块的基于区块的设置中的联合学习。据我们所知,拟议的解决方案是第一个在完全分散的联邦学习中团结的个性化和中毒鲁棒性。我们的评价表明,模型的专业化直接从基于DAG的模型更新通信到三个不同的数据集。此外,与联合平均相比,我们在客户端展示稳定的模型精度和更少的方差。
translated by 谷歌翻译