联合学习通过融合来自本地节点的协作模型来从分散的数据中学习。然而,FedAVG平均的传统基于坐标的模型忽略了每个参数编码的随机信息,并且可能遭受结构特征未对准。在这项工作中,我们提出了Fed2,一个功能对齐的联合学习框架来解决这个问题,通过在协作模型上建立一个坚定的结构特征对齐来解决这个问题。 FED2由两种主要设计组成:首先,我们设计了一个面向功能的模型结构适应方法,以确保不同神经网络结构中的显式功能分配。将结构适应应用于协作模型,可以在非常早期的训练阶段初始化具有类似特征信息的匹配结构。在联合学习过程中,我们提出了一个特征配对的平均方案,以保证对齐的特征分布,并在IID或非IID方案下维护没有特征融合冲突。最终,FED2可以在广泛的同源和异构环境下有效地提高联合学习收敛性能,提供出色的收敛速度,准确性和计算/通信效率。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
Federated learning allows edge devices to collaboratively learn a shared model while keeping the training data on device, decoupling the ability to do model training from the need to store the data in the cloud. We propose the Federated matched averaging (FedMA) algorithm designed for federated learning of modern neural network architectures e.g. convolutional neural networks (CNNs) and LSTMs. FedMA constructs the shared global model in a layer-wise manner by matching and averaging hidden elements (i.e. channels for convolution layers; hidden states for LSTM; neurons for fully connected layers) with similar feature extraction signatures. Our experiments indicate that FedMA not only outperforms popular state-of-the-art federated learning algorithms on deep CNN and LSTM architectures trained on real world datasets, but also reduces the overall communication burden. 1 * Work performed while doing an internship at IBM Research.
translated by 谷歌翻译
当客户具有不同的数据分布时,最新的联合学习方法的性能比其集中式同行差得多。对于神经网络,即使集中式SGD可以轻松找到同时执行所有客户端的解决方案,当前联合优化方法也无法收敛到可比的解决方案。我们表明,这种性能差异很大程度上可以归因于非概念性提出的优化挑战。具体来说,我们发现网络的早期层确实学习了有用的功能,但是最后一层无法使用它们。也就是说,适用于此非凸问题的联合优化扭曲了最终层的学习。利用这一观察结果,我们提出了一个火车征征训练(TCT)程序来避开此问题:首先,使用现成方法(例如FedAvg)学习功能;然后,优化从网络的经验神经切线核近似获得的共透性问题。当客户具有不同的数据时,我们的技术可在FMNIST上的准确性提高高达36%,而CIFAR10的准确性提高了 +37%。
translated by 谷歌翻译
作为包含结构和特征信息的特殊信息载体,图被广泛用于图挖掘中,例如图形神经网络(GNNS)。但是,在某些实际情况下,图形数据分别存储在多个分布式各方中,由于利益冲突,可能不会直接共享。因此,提出了联合图神经网络来解决此类数据孤岛问题,同时保留各方(或客户)的隐私。然而,各方之间的不同图形数据分布(称为统计异质性)可能会降低诸如fedAvg之类的幼稚联合学习算法的性能。在本文中,我们提出了一个基于自我图形的联合图形学习框架Fedego,以应对上述挑战,每个客户将在此培训其本地模型,同时也为全球模型的培训做出贡献。 Fedego应用图形上的自我图形来充分利用结构信息,并利用混音来实现隐私问题。为了处理统计异质性,我们将个性化整合到学习中,并提出一种自适应混合系数策略,使客户能够实现最佳个性化。广泛的实验结果和深入分析证明了联邦的有效性。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
随着对数据隐私和数据量迅速增加的越来越关注,联邦学习(FL)已成为重要的学习范式。但是,在FL环境中共同学习深层神经网络模型被证明是一项非平凡的任务,因为与神经网络相关的复杂性,例如跨客户的各种体系结构,神经元的置换不变性以及非线性的存在每一层的转换。这项工作介绍了一个新颖的联合异质神经网络(FEDHENN)框架,该框架允许每个客户构建个性化模型,而无需在跨客户范围内实施共同的架构。这使每个客户都可以优化本地数据并计算约束,同时仍能从其他(可能更强大)客户端的学习中受益。 Fedhenn的关键思想是使用从同行客户端获得的实例级表示,以指导每个客户的同时培训。广泛的实验结果表明,Fedhenn框架能够在跨客户的同质和异质体系结构的设置中学习更好地表现客户的模型。
translated by 谷歌翻译
In federated learning, a strong global model is collaboratively learned by aggregating clients' locally trained models. Although this precludes the need to access clients' data directly, the global model's convergence often suffers from data heterogeneity. This study starts from an analogy to continual learning and suggests that forgetting could be the bottleneck of federated learning. We observe that the global model forgets the knowledge from previous rounds, and the local training induces forgetting the knowledge outside of the local distribution. Based on our findings, we hypothesize that tackling down forgetting will relieve the data heterogeneity problem. To this end, we propose a novel and effective algorithm, Federated Not-True Distillation (FedNTD), which preserves the global perspective on locally available data only for the not-true classes. In the experiments, FedNTD shows state-of-the-art performance on various setups without compromising data privacy or incurring additional communication costs.
translated by 谷歌翻译
传统的联邦优化方法的性能较差(即降低准确性),尤其是对于高度偏斜的数据。在本文中,我们调查了佛罗里达州的标签分布偏斜,在那里标签的分布各不相同。首先,我们从统计视图研究了标签分布偏斜。我们在理论上和经验上都证明了基于软马克斯跨凝结的先前方法不合适,这可能会导致本地模型非常适合少数群体和缺失的类别。此外,我们从理论上引入了一个偏离,以测量本地更新后梯度的偏差。最后,我们建议通过\ textbf {l} ogits \ textbf {c}启动)FedLc(\ textbf {fed {fed}学习,该学习根据每个类别的出现可能性。 FedLC通过添加成对标签的边距将细粒度校准的跨透镜损失应用于本地更新。联合数据集和现实世界数据集的广泛实验表明,联邦快递会导致更准确的全球模型和大大改善的性能。此外,将其他FL方法集成到我们的方法中可以进一步增强全球模型的性能。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
联合学习(FL)有助于多个客户共同培训机器学习模型,而无需共享其私人数据。但是,客户的非IID数据给FL带来了艰巨的挑战。现有的个性化方法在很大程度上依赖于将一个完整模型作为基本单元的默认处理方法,而忽略了不同层对客户非IID数据的重要性。在这项工作中,我们提出了一个新的框架,联合模型组成部分自我注意力(FEDMCSA),以处理FL中的非IID数据,该数据采用模型组件自我注意机制来颗粒片促进不同客户之间的合作。这种机制促进了相似模型组件之间的合作,同时减少了差异很大的模型组件之间的干扰。我们进行了广泛的实验,以证明FEDMCSA在四个基准数据集上的表现优于先前的方法。此外,我们从经验上展示了模型组成部分自我发项机制的有效性,该机制与现有的个性化FL互补,可以显着提高FL的性能。
translated by 谷歌翻译
联合学习(FL)是一个有希望的策略,用于使用客户端(即边缘设备)的网络进行隐私保留,分布式学习。然而,客户之间的数据分布通常是非IID的,使得有效优化困难。为了缓解这个问题,许多流行算法专注于通过引入各种近似术语,一些产生可观的计算和/或内存开销来减轻客户端跨客户端的影响,以限制关于全局模型的本地更新。相反,我们考虑重新思考的解决方案,以重点关注局部学习一般性而不是近端限制。为此,我们首先提出了一项系统的研究,通过二阶指标通知,更好地了解FL中的算法效果。有趣的是,我们发现标准的正则化方法令人惊讶的是减轻数据异质性效应的强烈表现者。根据我们的调查结果,我们进一步提出了一种简单有效的方法,努力克服数据异质性和先前方法的陷阱。 FedAlign在各种设置中使用最先进的FL方法实现了竞争准确性,同时最大限度地减少计算和内存开销。代码将公开。
translated by 谷歌翻译
联合学习的目的是从多个分散设备(即客户)培训全球模型,而无需交换其私人本地数据。关键挑战是处理非i.i.d。 (独立分布的)数据,这些数据可能引起其本地功能的差异。我们介绍了超球联邦学习(球形)框架,以解决非i.i.d。通过限制学习数据点的学习表示,以在客户共享的单位超孔上。具体而言,所有客户都通过最大程度地减少固定分类器的损失来学习其本地表示,其权重跨度跨越了单位。在联合培训改善了全球模型后,通过最大程度地减少平方平方损失,通过封闭形式的解决方案进一步校准了该分类器。我们表明,可以有效地计算校准解决方案,而无需直接访问本地数据。广泛的实验表明,我们的球形方法能够通过相当大的利润率(在具有挑战性的数据集中达到6%)来提高多个现有联合学习算法的准确性,并具有增强的计算和跨数据集和模型架构的通信效率。
translated by 谷歌翻译
联邦学习已成为不同领域培训机器学习模型的重要范式。对于诸如图形分类的图形级任务,图也可以被视为一种特殊类型的数据样本,可以收集并存储在单独的本地系统中。类似于其他域,多个本地系统,每个域每个保持一小集图,可以受益于协同训练强大的图形挖掘模型,例如流行的图形神经网络(GNN)。为了为这种努力提供更多的动机,我们分析了不同域的实际图形,以确认它们确实共享了与随机图纸相比统计上显着的某些图形属性。但是,我们还发现,即使来自同一个域或相同的数据集,也发现不同的图表是非IID,这对于图形结构和节点特征。为了处理这一点,我们提出了一种基于GNN的梯度的群集联合学习(GCFL)框架的图表集群联合学习(GCFL)框架,并且理论上可以证明这种群集可以减少本地系统所拥有的图形之间的结构和特征异质性。此外,我们观察到GNN的梯度在GCFL中强制波动,从而阻碍了高质量的聚类,并基于动态时间翘曲(GCFL +)设计了一种基于梯度序列的聚类机制。广泛的实验结果和深入分析证明了我们提出的框架的有效性。
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
联合学习(FL)是一种流行的分布式学习模式,它可以从一组参与用户中学习模型而无需共享原始数据。 FL的一个主要挑战是异质用户,他们的分布不同(或非IID)数据和不同的计算资源。由于联合用户将使用该模型进行预测,因此他们经常要求训练有素的模型在测试时对恶意攻击者保持强大的态度。尽管对抗性培训(AT)为集中学习提供了一个合理的解决方案,但扩大对联合用户的使用范围已经引起了重大挑战,因为许多用户可能拥有非常有限的培训数据和严格的计算预算,以负担得起数据繁殖和成本高昂。在本文中,我们研究了一种新颖的FL策略:在联邦学习期间,从可负担得起的富裕用户的富裕用户传播对抗性的鲁棒性。我们表明,现有的FL技术不能与非IID用户之间稳健性的策略有效整合,并通过正确使用批处理规范化提出了有效的传播方法。我们通过广泛的实验证明了我们方法的合理性和有效性。特别是,即使只有一小部分用户在学习过程中,提出的方法也证明可以赋予联合模型出色的鲁棒性。源代码将发布。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译
最近联合学习(FL)范式的潜在假设是本地模型通常与全局模型共享与全局模型相同的网络架构,这对于具有不同的硬件和基础架构的移动和IOT设备变得不切实际。可扩展的联合学习框架应该解决配备不同计算和通信功能的异构客户端。为此,本文提出了一种新的联合模型压缩框架,它将异构低级模型分配给客户端,然后将它们聚合到全局全级模型中。我们的解决方案使得能够培训具有不同计算复杂性的异构本地模型,并汇总单个全局模型。此外,FEDHM不仅降低了设备的计算复杂性,而且还通过使用低秩模型来降低通信成本。广泛的实验结果表明,我们提出的\ System在测试顶-1精度(平均精度4.6%的精度增益)方面优于现行修剪的液体方法,在各种异构流域下较小的型号尺寸(平均较小为1.5倍) 。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译