随着大数据的快速增长,分布式机器学习(ML)已广泛应用于培训大型模型。随机梯度下降(SGD)可以说是ML的Workhorse算法。 SGD培训的分布式ML型号涉及大量的梯度通信,这限制了分布式ML的可扩展性。因此,压缩梯度以减少通信是重要的。在本文中,我们提出了FastSGD,一种用于分布式ML的快速压缩的SGD框架。为了以低成本实现高压缩比,FastSGD表示梯度作为键值对,并在线性时间复杂度压缩梯度键和值。对于梯度值压缩,FASTSGD首先使用互焦数映射器将原始值转换为互焦值,然后,它利用对数量化来进一步将互焦值减少到小整数。最后,FastSGD通过给定阈值过滤减少梯度整数。对于渐变键压缩,FastSGD提供了一种自适应细粒度的Δ编码方法,用于存储具有更少位的渐变键。实际ML模型和数据集的广泛实验证明,与最先进的方法相比,FastSGD实现了高达4个级别的压缩比,并加速了高达8倍的收敛时间。
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
数据爆炸和模型尺寸的增加推动了大规模机器学习的显着进步,但也使模型训练时间耗时和模型存储变得困难。为了解决具有较高计算效率和设备限制的分布式模型培训设置中的上述问题,仍然存在两个主要困难。一方面,交换信息的沟通成本,例如,不同工人之间的随机梯度是分布式培训效率的关键瓶颈。另一方面,较少的参数模型容易用于存储和通信,但是损坏模型性能的风险。为了同时平衡通信成本,模型容量和模型性能,我们提出了量化的复合镜下降自适应亚基(QCMD Adagrad),并量化正规化双平均平均自适应亚级别(QRDA ADAGRAD)进行分布式培训。具体来说,我们探讨了梯度量化和稀疏模型的组合,以降低分布式培训中每次迭代的通信成本。构建了基于量化梯度的自适应学习率矩阵,以在沟通成本,准确性和模型稀疏性之间达到平衡。此外,从理论上讲,我们发现大量化误差会引起额外的噪声,从而影响模型的收敛性和稀疏性。因此,在QCMD Adagrad和QRDA Adagrad中采用了具有相对较小误差的阈值量化策略,以提高信噪比并保留模型的稀疏性。理论分析和经验结果都证明了所提出的算法的功效和效率。
translated by 谷歌翻译
现代深度学习模型通常在分布式机器集合中并行培训,以减少训练时间。在这种情况下,机器之间模型更新的通信变成了一个重要的性能瓶颈,并且已经提出了各种有损的压缩技术来减轻此问题。在这项工作中,我们介绍了一种新的,简单但理论上和实践上有效的压缩技术:自然压缩(NC)。我们的技术分别应用于要进行压缩的更新向量的所有条目,并通过随机舍入到两个的(负或正)两种功能,可以通过忽略Mantissa来以“自然”方式计算。我们表明,与没有压缩相比,NC将压缩向量的第二刻增加不超过微小因子$ \ frac {9} {8} $,这意味着NC对流行训练算法的收敛速度的影响,例如分布式SGD,可以忽略不计。但是,NC启用的通信节省是可观的,导致$ 3 $ - $ 4 \ times $ $改善整体理论运行时间。对于需要更具侵略性压缩的应用,我们将NC推广到自然抖动,我们证明这比常见的随机抖动技术要好得多。我们的压缩操作员可以自行使用,也可以与现有操作员结合使用,从而产生更具侵略性的结合效果,并在理论和实践中提供新的最先进。
translated by 谷歌翻译
联合学习可以使远程工作人员能够协作培训共享机器学习模型,同时允许在本地保持训练数据。在无线移动设备的用例中,由于功率和带宽有限,通信开销是关键瓶颈。前工作已经利用了各种数据压缩工具,例如量化和稀疏,以减少开销。在本文中,我们提出了一种用于联合学习的预测编码的压缩方案。该方案在所有设备中具有共享预测功能,并且允许每个工作人员发送来自参考的压缩残余矢量。在每个通信中,我们基于速率失真成本选择预测器和量化器,并进一步降低熵编码的冗余。广泛的模拟表明,与其他基线方法相比,甚至更好的学习性能,通信成本可以减少高达99%。
translated by 谷歌翻译
High network communication cost for synchronizing gradients and parameters is the well-known bottleneck of distributed training. In this work, we propose TernGrad that uses ternary gradients to accelerate distributed deep learning in data parallelism. Our approach requires only three numerical levels {−1, 0, 1}, which can aggressively reduce the communication time. We mathematically prove the convergence of TernGrad under the assumption of a bound on gradients. Guided by the bound, we propose layer-wise ternarizing and gradient clipping to improve its convergence. Our experiments show that applying TernGrad on AlexNet doesn't incur any accuracy loss and can even improve accuracy. The accuracy loss of GoogLeNet induced by TernGrad is less than 2% on average. Finally, a performance model is proposed to study the scalability of TernGrad. Experiments show significant speed gains for various deep neural networks. Our source code is available 1 .
translated by 谷歌翻译
Parallel implementations of stochastic gradient descent (SGD) have received significant research attention, thanks to its excellent scalability properties. A fundamental barrier when parallelizing SGD is the high bandwidth cost of communicating gradient updates between nodes; consequently, several lossy compresion heuristics have been proposed, by which nodes only communicate quantized gradients. Although effective in practice, these heuristics do not always converge. In this paper, we propose Quantized SGD (QSGD), a family of compression schemes with convergence guarantees and good practical performance. QSGD allows the user to smoothly trade off communication bandwidth and convergence time: nodes can adjust the number of bits sent per iteration, at the cost of possibly higher variance. We show that this trade-off is inherent, in the sense that improving it past some threshold would violate information-theoretic lower bounds. QSGD guarantees convergence for convex and non-convex objectives, under asynchrony, and can be extended to stochastic variance-reduced techniques. When applied to training deep neural networks for image classification and automated speech recognition, QSGD leads to significant reductions in end-to-end training time. For instance, on 16GPUs, we can train the ResNet-152 network to full accuracy on ImageNet 1.8× faster than the full-precision variant. time to the same target accuracy is 2.7×. Further, even computationally-heavy architectures such as Inception and ResNet can benefit from the reduction in communication: on 16GPUs, QSGD reduces the end-to-end convergence time of ResNet152 by approximately 2×. Networks trained with QSGD can converge to virtually the same accuracy as full-precision variants, and that gradient quantization may even slightly improve accuracy in some settings. Related Work. One line of related research studies the communication complexity of convex optimization. In particular, [40] studied two-processor convex minimization in the same model, provided a lower bound of Ω(n(log n + log(1/ ))) bits on the communication cost of n-dimensional convex problems, and proposed a non-stochastic algorithm for strongly convex problems, whose communication cost is within a log factor of the lower bound. By contrast, our focus is on stochastic gradient methods. Recent work [5] focused on round complexity lower bounds on the number of communication rounds necessary for convex learning.Buckwild! [10] was the first to consider the convergence guarantees of low-precision SGD. It gave upper bounds on the error probability of SGD, assuming unbiased stochastic quantization, convexity, and gradient sparsity, and showed significant speedup when solving convex problems on CPUs. QSGD refines these results by focusing on the trade-off between communication and convergence. We view quantization as an independent source of variance for SGD, which allows us to employ standard convergence results [7]. The main differences from Buckw
translated by 谷歌翻译
嵌入式模型是高维数据的有效学习范例。但是,嵌入模型的一个开放问题是它们的表示(潜在因子)通常会导致大参数空间。我们观察到,现有的分布式训练框架面临嵌入模型的可伸缩性问题,因为从服务器的共享嵌入参数更新和检索共享嵌入参数通常占主导地位培训周期。在本文中,我们提出了一种新的系统框架,可显着提高巨大嵌入模型培训的可扩展性。我们拥抱嵌入的嵌入式作为绩效机会的倾斜流行分布,并利用它来解决具有嵌入缓存的通信瓶颈。为确保缓存跨越一致性,我们将新的一致性模型纳入HET设计,该模型提供了在每嵌入的基础上提供细粒度的一致性保证。与以前的工作相比,只允许读取操作的僵化,HET也利用了写入操作的血液性。六种代表性任务的评估表明,在最先进的基线上,HET达到高达88%的嵌入通信减少和高达20.68倍的性能加速。
translated by 谷歌翻译
由于培训数据集的大小爆炸,分布式学习近年来受到了日益增长的兴趣。其中一个主要瓶颈是中央服务器和本地工人之间的沟通成本。虽然已经证明错误反馈压缩以通过随机梯度下降(SGD)降低通信成本,但在培训大规模机器学习方面广泛用于培训的通信有效的适应性梯度方法楷模。在本文中,我们提出了一种新的通信 - 压缩AMSGRAD,用于分布式非透明的优化问题,可提供有效的效率。我们所提出的分布式学习框架具有有效的渐变压缩策略和工人侧模型更新设计。我们证明所提出的通信有效的分布式自适应梯度方法会聚到具有与随机非凸化优化设置中的未压缩的vanilla amsgrad相同的迭代复杂度的一阶静止点。关于各种基准备份我们理论的实验。
translated by 谷歌翻译
Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.
translated by 谷歌翻译
二阶优化方法,尤其是D-KFAC(分布式Kronecker近似曲率)算法,在加速GPU簇上加速了深神经网络(DNN)训练方面已获得了吸引力。但是,现有的D-KFAC算法需要计算和传达大量二阶信息,即Kronecker因素(KFS),在预处理梯度之前,导致大量计算和通信开销以及高存储器足迹。在本文中,我们提出了DP-KFAC,这是一种新颖的分布式预处理方案,该方案将不同DNN层的KF构造任务分配给不同的工人。 DP-KFAC不仅保留了现有D-KFAC算法的收敛性属性,而且还可以带来三个好处:减少计算开销在构造KFS中,没有KFS的通信和低内存足迹。在64-GPU群集上进行的广泛实验表明,DP-KFAC将开销的计算开销降低了1.55 x-1.65x,通信成本降低2.79x-3.15x,并且内存足迹在每秒二阶更新中降低1.14x-1.47 x与最先进的D-KFAC方法相比。
translated by 谷歌翻译
扩展培训工作负载的能力是深度学习的关键性能推动者之一。主要缩放方法是基于数据并行GPU的培训,该培训已经被硬件和软件支持高效地支持高效的GPU通信,特别是通过带宽过度曝光。此支持以A价格出现:相对于其“消费者级”对应物,“云级”服务器之间存在幅度成本差异,但相对于其“消费者级”对应物,虽然服务器级和消费者级GPU可以具有类似的计算信封。在本文中,我们调查了昂贵的硬件过度控制方法是否可以通过算法和系统设计所涵盖,并提出称为CGX的框架,为通信压缩提供有效的软件支持。我们认为,在没有硬件支持的情况下,该框架能够从消费者级多GPU系统中删除通信瓶颈:在没有硬件支持的情况下:在培训现代模型和全部准确性方面时,我们的框架可以在商品上进行2-3倍的自动加速系统使用8个消费者级NVIDIA RTX 3090 GPU,并使其超越NVIDIA DGX-1服务器的吞吐量,其具有类似的峰值闪光,但是从带宽过度提供的益处。
translated by 谷歌翻译
Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections. In this paper, we find 99.9% of the gradient exchange in distributed SGD are redundant, and propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth. To preserve accuracy during this compression, DGC employs four methods: momentum correction, local gradient clipping, momentum factor masking, and warm-up training. We have applied Deep Gradient Compression to image classification, speech recognition, and language modeling with multiple datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On these scenarios, Deep Gradient Compression achieves a gradient compression ratio from 270× to 600× without losing accuracy, cutting the gradient size of ResNet-50 from 97MB to 0.35MB, and for DeepSpeech from 488MB to 0.74MB. Deep gradient compression enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates distributed training on mobile. The code is available at: https://github.com/synxlin/ deep-gradient-compression.
translated by 谷歌翻译
分布式随机梯度下降(SGD)方法已广泛应用于大型深度学习,梯度集体方法至关重要,以确保分布式深度学习系统的培训可扩展性。已广泛采用分布式SGD过程广泛采用诸如解释的集体通信,以减少通信时间。但是,allreduce会引发大带宽资源,而在许多情况下大多数梯度稀疏,因为许多梯度值是零,并且应该有效地压缩以用于节省带宽。为了减少稀疏梯度通信开销,我们提出了一种稀疏的剪影减速器(S2减速器),这是一种具有收敛保证的新型草图的稀疏梯度聚合方法。 S2减速机仅通过Count-Sketch和Bitmap压缩非零梯度来降低通信成本,并实现有效的已有SGD培训的有效恢复运算符。我们在五种培训模型中对四种最先进的方法进行广泛的评估。我们的结果表明,S2减速机收敛到相同的准确性,降低了81 \%稀疏通信开销,与最先进的方法相比,实现了1.8 $ \ times $ Speedup。
translated by 谷歌翻译
沟通压缩是现代分布式学习系统的至关重要技术,可以减轻其在较慢的网络上的交流瓶颈。尽管最近对数据并行式训练的梯度压缩进行了深入的研究,但压缩了通过管道并行性训练的模型的激活仍然是一个空旷的问题。在本文中,我们提出了AC-SGD,这是一种新型的激活压缩算法,用于在慢速网络上进行通信有效的管道并行性训练。 AC-SGD与以前的激活压缩方面的努力不同,而不是直接压缩激活值,而是压缩激活的变化。这使我们能够首次向我们的知识表明,仍然可以实现$ o(1/\ sqrt {t})$收敛速率,即激活压缩的非convex目标,而无需对梯度做出假设无偏见对于具有非线性激活功能的深度学习模型不符合。然后,我们证明AC-SGD可以有效地优化和实施,而无需额外的端到端运行时开销。我们将AC-SGD评估为微调语言具有高达15亿个参数的模型,将激活压缩至2-4位。AC-SGD在较慢的网络中可提供高达4.3倍的端到端速度,而无需牺牲模型质量。此外,我们还表明,AC-SGD可以与最先进的梯度压缩算法结合使用,以启用“端到端通信压缩:机器之间的所有通信,包括模型梯度,远期激活和后退梯度压缩为较低的精度。这提供了高达4.9倍的端到端加速,而无需牺牲模型质量。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
深度学习在许多应用中取得了巨大成功。然而,其在实践中的部署已经受到两个问题的困扰:由于通常在地理上分布的大量数据传输,必须集中聚合的数据的隐私。解决这两个问题都是具有挑战性的,并且大多数现有工程无法提供有效的解决方案。在本文中,我们开发FEDPC,是隐私保存和沟通效率的联邦深度学习框架。该框架允许在多个私有数据集中学习模型,同时不显示培训数据的任何信息,即使是中间数据。该框架还可以最大限度地减少更新模型的数据量。我们正式证明培训FEDPC及其隐私保留财产时学习模型的融合。我们对大量实验进行了广泛的实验,以评估FEDPC的性能,以近似到上限的性能(培训集中时)和通信开销。结果表明,当数据分配到10个计算节点时,FEDPC在8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%。与现有工程相比,FEDPC还将通信开销降低至42.20±20美元。
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
分布式平均值估计(DME)是联邦学习中的一个中央构建块,客户将本地梯度发送到参数服务器,以平均和更新模型。由于通信限制,客户经常使用有损压缩技术来压缩梯度,从而导致估计不准确。当客户拥有多种网络条件(例如限制的通信预算和数据包损失)时,DME更具挑战性。在这种情况下,DME技术通常会导致估计误差显着增加,从而导致学习绩效退化。在这项工作中,我们提出了一种名为Eden的强大DME技术,该技术自然会处理异质通信预算和数据包损失。我们为伊甸园提供了有吸引力的理论保证,并通过经验进行评估。我们的结果表明,伊甸园对最先进的DME技术持续改进。
translated by 谷歌翻译