时尚推荐通常被拒绝,因为它是找到适合给定用户的查询服装或检索服装的互补物品的任务。在这项工作中,我们通过根据提议的敷料的样式添加附加语义层来解决问题。我们根据两个重要方面的样式建模:颜色组合图案背后隐藏的情绪和情感以及给定类型的社交事件所检索的服装的适当性。为了解决前者,我们依靠Shigenobu Kobayashi的颜色图像量表,这将情感模式和情绪与色彩三元组相关联。相反,通过从社交事件的图像中提取服装来分析后者。总体而言,我们集成了最先进的服装建议框架样式分类器和事件分类器,以便在给定的查询上建议建议。
translated by 谷歌翻译
Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.
translated by 谷歌翻译
Building a successful recommender system depends on understanding both the dimensions of people's preferences as well as their dynamics. In certain domains, such as fashion, modeling such preferences can be incredibly difficult, due to the need to simultaneously model the visual appearance of products as well as their evolution over time. The subtle semantics and non-linear dynamics of fashion evolution raise unique challenges especially considering the sparsity and large scale of the underlying datasets. In this paper we build novel models for the One-Class Collaborative Filtering setting, where our goal is to estimate users' fashion-aware personalized ranking functions based on their past feedback. To uncover the complex and evolving visual factors that people consider when evaluating products, our method combines high-level visual features extracted from a deep convolutional neural network, users' past feedback, as well as evolving trends within the community. Experimentally we evaluate our method on two large real-world datasets from Amazon.com, where we show it to outperform stateof-the-art personalized ranking measures, and also use it to visualize the high-level fashion trends across the 11-year span of our dataset.
translated by 谷歌翻译
推荐系统已被广泛用于各种领域,例如音乐,电影,电子购物。等等。在大多避免数字化之后,由于流行病而最近达到了技术转折点,使在线销售显着增长,并提供定量的定量性。有关艺术家和艺术品的在线数据。在这项工作中,我们提出了一个基于内容的推荐系统,依靠艺术品和艺术家的上下文元数据的图像。我们收集和注释的艺术品提供了高级和特定于艺术的信息,以创建一个完全独特的数据库,该数据库用于培训我们的模型。有了这些信息,我们在艺术品之间构建了一个接近图。同样,我们使用NLP技术来表征艺术家的实践,并从展览和其他活动历史中提取信息,以在艺术家之间创建近距离图。图形分析的力量使我们能够基于艺术品和艺术家的视觉和上下文信息的结合提供艺术品推荐系统。经过一组艺术专家的评估,与他们的专业评估相比,我们的平均最终评分为75%。
translated by 谷歌翻译
图像的美学质量被定义为图像美的度量或欣赏。美学本质上是一个主观性的财产,但是存在一些影响它的因素,例如图像的语义含量,描述艺术方面的属性,用于射击的摄影设置等。在本文中,我们提出了一种方法基于语义含量分析,艺术风格和图像的组成的图像自动预测图像的美学。所提出的网络包括:用于语义特征的预先训练的网络,提取(骨干网);依赖于骨干功能的多层的Perceptron(MLP)网络,用于预测图像属性(attributeNet);一种自适应的HyperNetwork,可利用以前编码到attributeNet生成的嵌入的属性以预测专用于美学估计的目标网络的参数(AestheticNet)。鉴于图像,所提出的多网络能够预测:风格和组成属性,以及美学分数分布。结果三个基准数据集展示了所提出的方法的有效性,而消融研究则更好地了解所提出的网络。
translated by 谷歌翻译
社交媒体营销在向广泛的受众群体推广品牌和产品价值方面起着至关重要的作用。为了提高其广告收入,诸如Facebook广告之类的全球媒体购买平台不断减少品牌有机帖子的覆盖范围,推动品牌在付费媒体广告上花费更多。为了有效地运行有机和付费社交媒体营销,有必要了解受众,调整内容以适合其兴趣和在线行为,这是不可能大规模手动进行的。同时,各种人格类型分类方案(例如Myers-Briggs人格类型指标)使得通过以统一和结构化的方式对受众行为进行分类,可以在更广泛的范围内揭示人格特质和用户内容偏好之间的依赖性。研究界尚待深入研究这个问题,而到目前为止,尚未广泛使用和全面评估,而不同人格特征对内容建议准确性的影响水平尚未得到广泛的利用和全面评估。具体而言,在这项工作中,我们通过应用一种新型人格驱动的多视图内容推荐系统,研究人格特征对内容推荐模型的影响,称为人格内容营销推荐引擎或Persic。我们的实验结果和现实世界案例研究不仅表明Persic执行有效的人格驱动的多视图内容建议,而且还允许采用可行的数字广告策略建议,当部署时能够提高数字广告效率超过420 %与原始的人类指导方法相比。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
由于用户不是最终的内容消费者,因此在内容市场中提供有意义的建议是具有挑战性的。取而代之的是,大多数用户是创意者的兴趣,与他们从事的项目相关,迅速而突然地改变。为了解决向内容创建者推荐图像的具有挑战性的任务,我们设计了一个recsys,以学习视觉样式的偏好,横向用户工作的项目的语义。我们分析了任务的挑战与语义驱动的基于内容的建议,提出评估设置并解释其在全球图像市场中的应用。该技术报告是ACM Recsys '22介绍的论文“学习用户在图像市场中的首选视觉样式”的扩展。
translated by 谷歌翻译
由于其主观性质,美学的计算推断是一项不确定的任务。已经提出了许多数据集来通过根据人类评级提供成对的图像和美学得分来解决问题。但是,人类更好地通过语言表达自己的观点,品味和情感,而不是单个数字总结他们。实际上,照片评论提供了更丰富的信息,因为它们揭示了用户如何以及为什么对视觉刺激的美学评价。在这方面,我们提出了Reddit照片评论数据集(RPCD),其中包含图像和照片评论的元素。 RPCD由74K图像和220k评论组成,并从业余爱好者和专业摄影师使用的Reddit社区收集,以利用建设性的社区反馈来提高其摄影技巧。所提出的数据集与以前的美学数据集不同,主要是三个方面,即(i)数据集的大规模数据集和批评图像不同方面的评论的扩展,(ii)它主要包含Ultrahd映像,以及(iii)它通过自动管道收集,可以轻松地扩展到新数据。据我们所知,在这项工作中,我们提出了首次尝试估算批评的视觉刺激质量的尝试。为此,我们利用批评情绪的极性为美学判断的指标。我们证明了情感如何与可用于两种美学评估基准的美学判断正相关。最后,我们通过使用情感得分作为排名图像的目标进行了几种模型。提供数据集和基准(https://github.com/mediatechnologycenter/aestheval)。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
使用个性化解释来支持建议,以增加信任和感知质量。但是,为了实际获取更好的建议,需要一种用户通过与解释进行交互来修改推荐标准的手段。我们介绍了一种新颖的技术,使用方面标记,学会从审查文本生成关于建议的个性化解释,并且我们表明人类用户明显更喜欢通过最先进技术产生的解释这些解释。我们的工作最重要的创新是它允许用户通过批评文本解释来对推荐作出反应:删除(对称添加)它们不喜欢的某些方面或不再相关(对称地是感兴趣的)。系统根据批评更新其用户模型和产生的建议。这是基于一种具有文本解释的单一和多步批判的新型无监督批评方法。两个现实世界数据集的实验表明,我们的系统是第一个在适应多步批评中表达的偏好方面实现良好性能的实验。
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
随着人格计算的出现作为与人工智能和人格心理有关的新研究领域,我们目睹了一个前所未有的人格意识推荐系统的扩散。与传统推荐系统不同,这些新系统解决了传统问题,如冷启动和数据稀疏问题。该调查旨在研究和系统地分类人格意识推荐系统。据我们所知,这项调查是第一个重点关注人格意识推荐系统。通过比较其个性建模方法以及其推荐技术,我们探索了人格感知推荐系统的不同设计选择。此外,我们介绍了常用的数据集,并指出了人格感知推荐系统的一些挑战。
translated by 谷歌翻译
人类影响识别是一个完善的研究领域,具有许多应用,例如心理护理,但现有方法认为所有兴趣情绪都是先验的作为注释培训例子。然而,通过新颖的心理学理论的人类情感谱的粒度和改进的上升和改善语境中的情绪增加给数据收集和标签工作带来了相当大的压力。在本文中,我们在语境中概念化了对情绪的一次性识别 - 一种新的问题,旨在识别来自单个支持样品的更精细粒子水平的人体影响。为了解决这项具有挑战性的任务,我们遵循深度度量学习范例,并引入多模态情绪嵌入方法,通过利用人类外观的互补信息和通过语义分割网络获得的语义场景上下文来最大限度地减少相同情绪嵌入的距离。我们上下文感知模型的所有流都使用加权三态丢失和加权交叉熵损失来共同优化。我们对适应我们单次识别问题的Demotic DataSet的分类和数值情感识别任务进行了彻底的实验,揭示了从单一示例中分类人类影响是一项艰巨的任务。尽管如此,我们模型的所有变体都明显优于随机基线,同时利用语义场景上下文一致地提高了学习的表示,在一次射击情感识别中设置最先进的结果。为了促进对人类影响国家的更普遍表示的研究,我们将在https://github.com/kpeng9510/affect-dml下公开向社区公开提供我们的基准和模型。
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
如今,推荐系统和搜索引擎在时尚电子商务中发挥积分作用。尽管如此,许多挑战谎言,这项研究试图解决一些问题。本文首先介绍了一种基于内容的时尚推荐系统,它使用并行神经网络作为输入,通过列出商店中可用的类似物品来获取单个时尚项目商店映像。接下来,增强相同的结构以基于用户偏好来个性化结果。然后,这项工作引入了一个背景增强技术,使系统更强大地对域外查询,使其仅使用培训的目录商店图像进行街道到商店建议。此外,本文的最后贡献是推荐任务的新评估度量,称为客观引导的人为评分。该方法是一个完全可定制的框架,可以产生来自人类评分术的主观评估的可解释,可比的分数。
translated by 谷歌翻译
社交媒体有可能提供有关紧急情况和突然事件的及时信息。但是,在每天发布的数百万帖子中找到相关信息可能很困难,并且开发数据分析项目通常需要时间和技术技能。这项研究提出了一种为分析社交媒体的灵活支持的方法,尤其是在紧急情况下。引入了可以采用社交媒体分析的不同用例,并讨论了从大量帖子中检索信息的挑战。重点是分析社交媒体帖子中包含的图像和文本,以及一组自动数据处理工具,用于过滤,分类和使用人类的方法来支持数据分析师的内容。这种支持包括配置自动化工具的反馈和建议,以及众包收集公民的投入。通过讨论Crowd4SDG H2020欧洲项目中开发的三个案例研究来验证结果。
translated by 谷歌翻译
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge.Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a dataefficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model.We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
translated by 谷歌翻译
推荐系统,为用户提供个性化建议,为当今的许多社交媒体,电子商务和娱乐提供动力。但是,已知这些系统可以从各种角度从智力上隔离用户,或引起过滤气泡。在我们的工作中,我们表征和减轻了这种过滤器气泡效应。我们通过根据其用户 - 项目交互历史记录对各种数据点进行分类,并使用众所周知的Tracin方法对彼此的影响进行分类。最后,我们通过仔细地重新训练我们的建议系统来减轻这种过滤器气泡效果而不会损害精度。
translated by 谷歌翻译