在本文中,我们开发Faceqgen,基于生成的对抗网络的面部图像的No参考质量评估方法,其产生与面部识别精度相关的标量质量测量。 Faceqgen不需要标记为培训的质量措施。它从使用SCFace数据库从头开始培训。 Faceqgen将图像恢复应用于未知质量的面部图像,将其转换为规范的高质量图像,即正面姿势,均匀的背景等。质量估计是原始图像和恢复图像之间的相似性,因为低质量图像由于恢复而体验更大的变化。我们比较三种不同的数值质量措施:a)原始和恢复的图像之间的MSE,b)他们的SSIM和c)甘杆菌鉴别器的输出得分。结果表明,面部QGEN的质量措施是面部识别准确性的良好估计。我们的实验包括与针对面部和一般图像设计的其他质量评估方法的比较,以便在现有技术中定位面部。这种比较表明,即使面对面识别准确性预测方面不超过最佳现有的面部质量评估方法,它也实现了足够的结果,以证明质量估计的半监督学习方法的潜力(特别是数据 - 基于每个受试者的单一高质量图像的驱动学习),具有提高未来性能的能力,通过对模型的充分改进以及竞争方法的显着优势,不需要质量标签的发展。这使得Faceqgen灵活且可扩展,而无需昂贵的数据策激。
translated by 谷歌翻译
本章的主要范围是作为面部介绍攻击检测的介绍,包括过去几年的关键资源和领域的进步。下一页呈现了面部识别系统可以面对的不同演示攻击,其中攻击者向传感器提供给传感器,主要是相机,呈现攻击仪器(PAI),这通常是照片,视频或掩码,试图冒充真正的用户。首先,我们介绍了面部识别的现状,部署水平及其挑战。此外,我们介绍了面部识别系统可能暴露的漏洞和可能的攻击,表明呈现攻击检测方法的高度重要性。我们审核不同类型的演示攻击方法,从更简单到更复杂,在哪个情况下它们可能是有效的。然后,我们总结了最受欢迎的演示文稿攻击检测方法来处理这些攻击。最后,我们介绍了研究界使用的公共数据集,以探索面部生物识别性的脆弱性,以呈现攻击,并对已知的PAI制定有效的对策。
translated by 谷歌翻译
已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
基于全面的生物识别是一个广泛的研究区域。然而,仅使用部分可见的面,例如在遮盖的人的情况下,是一个具有挑战性的任务。在这项工作中使用深卷积神经网络(CNN)来提取来自遮盖者面部图像的特征。我们发现,第六和第七完全连接的层,FC6和FC7分别在VGG19网络的结构中提供了鲁棒特征,其中这两层包含4096个功能。这项工作的主要目标是测试基于深度学习的自动化计算机系统的能力,不仅要识别人,还要对眼睛微笑等性别,年龄和面部表达的认可。我们的实验结果表明,我们为所有任务获得了高精度。最佳记录的准确度值高达99.95%,用于识别人员,99.9%,年龄识别的99.9%,面部表情(眼睛微笑)认可为80.9%。
translated by 谷歌翻译
面部演示攻击检测(PAD)由于欺骗欺骗性被广泛认可的脆弱性而受到越来越长。在2011年,2013年,2017年,2019年,2020年和2021年与主要生物识别和计算机视觉会议结合的八个国际竞赛中,在八个国际竞赛中评估了一系列国际竞争中的八种国际竞争中的艺术状态。研究界。在本章中,我们介绍了2019年的五个最新竞赛的设计和结果直到2021年。前两项挑战旨在评估近红外(NIR)和深度方式的多模态设置中面板的有效性。彩色相机数据,而最新的三个竞争专注于评估在传统彩色图像和视频上运行的面部垫算法的域和攻击型泛化能力。我们还讨论了从竞争中吸取的经验教训以及领域的未来挑战。
translated by 谷歌翻译
生物识别技术在过去十年中越来越多地部署,比传统的个人认可方法提供更大的安全性和便利性。虽然生物识别信号的质量严重影响生物识别系统的性能,但在评估质量的先验研究中有限。质量是安全的关键问题,特别是在涉及监视摄像机,取证,便携式设备或通过互联网远程访问的不利情景。本文分析了对生物识别质量产生负面影响的因素,如何克服它们,以及如何将质量措施纳入生物识别系统。在这些问题中对本领域的审查提供了一种对生物识别质量挑战的整体框架。
translated by 谷歌翻译
儿童性滥用和剥削(CSAE)受害者的确切年龄估计是最重要的数字取证挑战之一。调查人员通常需要通过查看图像和解释性发展阶段和其他人类特征来确定受害者的年龄。主要优先事项 - 保障儿童 - 通常受到这项工作可能需要的巨大的法医反积云,认知偏见和巨大的心理压力的负面影响。本文评估了现有的面部图像数据集,并提出了一种针对类似数字法医研究贡献的需求而定制的新数据集。这个小型,不同的DataSet为0到20岁的个人包含245个图像,并与FG-Net DataSet的82个唯一图像合并,从而实现了具有高图像分集和低年龄范围密度的327个图像。在IMDB-Wiki DataSet上预先培训的深度期望(DEX)算法测试新数据集。 16至20岁的年轻青少年和年龄较大的青少年/成年人的整体成果非常令人鼓舞 - 达到1.79年的MAE,但也表明0至10岁儿童的准确性需要进一步的工作。为了确定原型的功效,已经考虑了四个数字法医专家的有价值输入,以提高年龄估计结果。需要进一步的研究来扩展关于图像密度的数据集和性别和种族分集等因素的平等分布。
translated by 谷歌翻译
在人脸识别系统中实现高性能的必要因素是其样本的质量。由于这些系统涉及各种日常生活,因此对人类可以理解的面部识别过程具有很强的需要。在这项工作中,我们介绍了像素级面部图像质量的概念,该概念确定面部图像中像素的效用以进行识别。鉴于任意面部识别网络,在这项工作中,我们提出了一种无培训方法来评估面部图像的像素级质量。为此,估计输入图像的特定模型质量值并用于构建特定于样本的质量回归模型。基于该模型,基于质量的梯度被回到传播并转换为像素级质量估计。在实验中,我们基于真实和人工扰动的基于实际和人工障碍来定量和定量地研究了像素级质量的有意义性。在所有场景中,结果表明,所提出的解决方案产生有意义的像素级质量。该代码可公开可用。
translated by 谷歌翻译
通过大规模数据实现具有面部识别的高度安全的应用程序(如边境交叉路)需要广泛的生物识别性能测试。然而,使用真实面部图像引起了对隐私的担忧,因为法律不允许图像用于其他目的而不是最初的目的。使用代表和面部数据的子集还可以导致不需要的人口统计偏见并导致数据集不平衡。克服这些问题的一种可能解决方案是用综合生成的样本替换真实的面部图像。在生成合成图像的同时,从计算机视觉中的最新进步中受益,虽然有利于电脑视觉的最新进步,但在类似实际变化的同一合成标识的多个样本中仍然是不合适的,即交配样本。这项工作提出了一种通过利用样式牢固的潜在空间来生成配合的面部图像的非确定性方法。通过操纵潜伏的矢量来产生交配的样本,更精确地,我们利用主成分分析(PCA)来定义潜在空间中的语义有意义的方向,并使用预先训练的面部识别系统控制原始样本和配合样本之间的相似性。我们创建了由77,034个样本组成的合成面图像(Symface)的新数据集,包括25,919个合成ID。通过我们的分析,使用良好的面部图像质量指标,我们展示了模仿真实生物识别数据的特征的合成样本的生物识别质量的差异。其分析和结果表明使用使用所提出的方法创建的合成样本作为更换真实生物识别数据的可行替代品。
translated by 谷歌翻译
2019年冠状病毒疾病(Covid-19)继续自爆发以来对世界产生巨大挑战。为了对抗这种疾病,开发了一系列人工智能(AI)技术,并应用于现实世界的情景,如安全监测,疾病诊断,感染风险评估,Covid-19 CT扫描的病变细分等。 Coronavirus流行病迫使人们佩戴面膜来抵消病毒的传播,这也带来了监控戴着面具的大群人群的困难。在本文中,我们主要关注蒙面面部检测和相关数据集的AI技术。从蒙面面部检测数据集的描述开始,我们调查了最近的进步。详细描述并详细讨论了十三可用数据集。然后,该方法大致分为两类:传统方法和基于神经网络的方法。常规方法通常通过用手工制作的特征升高算法来训练,该算法占少比例。基于神经网络的方法根据处理阶段的数量进一步归类为三个部分。详细描述了代表性算法,与一些简要描述的一些典型技术耦合。最后,我们总结了最近的基准测试结果,讨论了关于数据集和方法的局限性,并扩大了未来的研究方向。据我们所知,这是关于蒙面面部检测方法和数据集的第一次调查。希望我们的调查可以提供一些帮助对抗流行病的帮助。
translated by 谷歌翻译
面部检测是计算机愿景领域的长期挑战,最终目标是准确地将人类面临着不受约束的环境。由于与姿势,图像分辨率,照明,闭塞和观点相关的混淆因素,使这些系统具有重要的技术障碍。据说,随着最近的机器学习的发展,面部检测系统实现了非凡的准确性,主要是基于数据驱动的深度学习模型[70]。虽然鼓励,限制了部署系统的面部检测性能和社会责任的关键方面是人类外观的固有多样性。每个人类的外表都反映了一个人的东西,包括他们的遗产,身份,经验和自我表达的可见表现。但是,有关面部检测系统如何在面对不同的面部尺寸和形状,肤色,身体修改和身体装饰方面进行良好的表现问题。为了实现这一目标,我们收集了独特的人类外观数据集,这是一种图像集,表示具有低频率的外观,并且往往是面部数据集的缺点。然后,我们评估了当前最先进的脸部检测模型,其能够检测这些图像中的面部。评估结果表明,面部检测算法对这些不同的外观没有概括。评估和表征当前的面部检测模型的状态将加速研究和开发,以创造更公平和更准确的面部检测系统。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
横梁面部识别(CFR)旨在识别个体,其中比较面部图像源自不同的感测模式,例如红外与可见的。虽然CFR由于与模态差距相关的面部外观的显着变化,但CFR具有比经典的面部识别更具挑战性,但它在具有有限或挑战的照明的场景中,以及在呈现攻击的情况下,它是优越的。与卷积神经网络(CNNS)相关的人工智能最近的进展使CFR的显着性能提高了。由此激励,这项调查的贡献是三倍。我们提供CFR的概述,目标是通过首先正式化CFR然后呈现具体相关的应用来比较不同光谱中捕获的面部图像。其次,我们探索合适的谱带进行识别和讨论最近的CFR方法,重点放在神经网络上。特别是,我们提出了提取和比较异构特征以及数据集的重新访问技术。我们枚举不同光谱和相关算法的优势和局限性。最后,我们讨论了研究挑战和未来的研究线。
translated by 谷歌翻译
面部识别系统必须处理可能导致匹配决策不正确的大型变量(例如不同的姿势,照明和表达)。这些可变性可以根据面部图像质量来测量,这在样本的效用上定义了用于识别的实用性。以前的识别作品不使用这种有价值的信息或利用非本质上的质量估算。在这项工作中,我们提出了一种简单且有效的面部识别解决方案(Qmagface),其将质量感知的比较分数与基于大小感知角裕度损耗的识别模型相结合。所提出的方法包括比较过程中特定于模型的面部图像质量,以增强在无约束情况下的识别性能。利用利用损失诱导的质量与其比较评分之间的线性,我们的质量意识比较功能简单且高度普遍。在几个面部识别数据库和基准上进行的实验表明,引入的质量意识导致识别性能一致的改进。此外,所提出的Qmagface方法在挑战性环境下特别好,例如交叉姿势,跨年或跨品。因此,它导致最先进的性能在几个面部识别基准上,例如在XQLFQ上的98.50%,83.97%,CFP-FP上的98.74%。 QMagface的代码是公开可用的。
translated by 谷歌翻译
本文介绍了一个新颖的数据集,以帮助研究人员评估他们的计算机视觉和音频模型,以便在各种年龄,性别,表观肤色和环境照明条件下进行准确性。我们的数据集由3,011名受试者组成,并包含超过45,000个视频,平均每人15个视频。这些视频被录制在多个美国国家,各种成年人在各种年龄,性别和明显的肤色群体中。一个关键特征是每个主题同意参与他们使用的相似之处。此外,我们的年龄和性别诠释由受试者自己提供。一组训练有素的注释器使用FitzPatrick皮肤型刻度标记了受试者的表观肤色。此外,还提供了在低环境照明中记录的视频的注释。作为衡量某些属性的预测稳健性的申请,我们对DeepFake检测挑战(DFDC)的前五名获胜者提供了全面的研究。实验评估表明,获胜模型对某些特定人群的表现较小,例如肤色较深的肤色,因此可能对所有人都不概括。此外,我们还评估了最先进的明显年龄和性别分类方法。我们的实验在各种背景的人们的公平待遇方面对这些模型进行了彻底的分析。
translated by 谷歌翻译
导出无监督或基于统计的面部图像质量评估(FIQ)方法的解释性是挑战性的。在这项工作中,我们提出了一种新颖的可解释工具,可以推导出不同FIQA决策的推理及其人脸识别(FR)性能影响。我们避免通过在处理具有不同FIQA决策的样本时对FR模型的行为进行分析来限制我们的工具对某些FIQA方法的部署。这导致可解释可以使用任何基于CNN的FIQ方法应用于使用激活映射的FIQA方法来展示用于从面部嵌入的网络的激活来展示网络的激活。为了避免FR模型中的低质量和高质量图像的一般空间激活映射之间的低鉴别,我们通过分析具有不同质量决策的图像集的FR激活图的变化来在更高的衍生空间中构建我们的解释工具。我们通过呈现帧间和内部 - FIQ方法分析,展示我们的工具并分析了四种FIQ方法的调查结果。我们提出的工具和基于其他结论的分析指出,在其他结论中,高质量的图像通常会对中心面区域以外的区域导致一致的低激活,而尽管普遍低激活,但具有低质量的图像,具有高差异在这些区域的激活。我们的解释工具还扩展到分析单个图像,在那里我们表明低质量的图像倾向于具有FR模型空间激活,其强烈地不同于来自高质量图像的预期,其中这种差异也倾向于在外面的区域内出现更多中心面部区域并且确实对应于极端姿势和面部闭合等问题。此处可以访问所提出的工具的实现[链接]。
translated by 谷歌翻译
动物运动跟踪和姿势识别的进步一直是动物行为研究的游戏规则改变者。最近,越来越多的作品比跟踪“更深”,并解决了对动物内部状态(例如情绪和痛苦)的自动认识,目的是改善动物福利,这使得这是对该领域进行系统化的及时时刻。本文对基于计算机的识别情感状态和动物的疼痛的研究进行了全面调查,并涉及面部行为和身体行为分析。我们总结了迄今为止在这个主题中所付出的努力 - 对它们进行分类,从不同的维度进行分类,突出挑战和研究差距,并提供最佳实践建议,以推进该领域以及一些未来的研究方向。
translated by 谷歌翻译
面部变形攻击检测具有挑战性,并为面部验证系统带来了具体和严重的威胁。此类攻击的可靠检测机制已通过强大的跨数据库协议和未知的变形工具进行了测试,这仍然是一项研究挑战。本文提出了一个框架,遵循了几次射击学习方法,该方法使用三胞胎 - 硬性损坏共享基于暹罗网络的图像信息,以应对变形攻击检测并增强聚类分类过程。该网络比较了真正的或潜在的变形图像与变形和真正的面部图像的三胞胎。我们的结果表明,这个新的网络将数据点群集成,并将它们分配给类,以便在跨数据库方案中获得较低的相等错误率,仅共享来自未知数据库的小图像编号。几乎没有学习的学习有助于增强学习过程。使用FRGCV2训练并使用FERET和AMSL开放式数据库测试的跨数据库的实验结果将BPCer10使用RESNET50和5.50%的MobileNETV2从43%降低到4.91%。
translated by 谷歌翻译
面部检测和识别是人工智能系统中最困难,经常使用的任务。这项研究的目的是介绍和比较系统中使用的几种面部检测和识别算法的结果。该系统始于人类的训练图像,然后继续进行测试图像,识别面部,将其与受过训练的面部进行比较,最后使用OPENCV分类器对其进行分类。这项研究将讨论系统中使用的最有效,最成功的策略,这些策略是使用Python,OpenCV和Matplotlib实施的。它也可以用于CCTV的位置,例如公共场所,购物中心和ATM摊位。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译