随着LIDAR传感器在自动驾驶中的流行率,3D对象跟踪受到了越来越多的关注。在点云序列中,3D对象跟踪旨在预测给定对象模板中连续帧中对象的位置和方向。在变压器成功的驱动下,我们提出了点跟踪变压器(PTTR),它有效地预测了高质量的3D跟踪,借助变压器操作,以粗到1的方式导致。 PTTR由三个新型设计组成。 1)我们设计的关系意识采样代替随机抽样,以在亚采样过程中保留与给定模板相关的点。 2)我们提出了一个点关系变压器,以进行有效的特征聚合和模板和搜索区域之间的特征匹配。 3)基于粗糙跟踪结果,我们采用了一个新颖的预测改进模块,通过局部特征池获得最终的完善预测。此外,以捕获对象运动的鸟眼视图(BEV)的有利特性(BEV)的良好属性,我们进一步设计了一个名为PTTR ++的更高级的框架,该框架既包含了点的视图和BEV表示)产生高质量跟踪结果的影响。 PTTR ++实质上提高了PTTR顶部的跟踪性能,并具有低计算开销。多个数据集的广泛实验表明,我们提出的方法达到了卓越的3D跟踪准确性和效率。
translated by 谷歌翻译
在点云序列中,3D对象跟踪目的是在给定模板点云的情况下预测当前搜索点云中的对象的位置和方向。通过变压器的成功,我们提出了点跟踪变压器(PTTR),其有效地在变压器操作的帮助下以粗良好的方式预测高质量的3D跟踪结果。 PTTR由三种新颖的设计组成。 1)除了随机抽样中,我们设计关系感知采样,以保护在子采样期间给定模板的相关点。 2)此外,我们提出了一种由自我关注和跨关注模块组成的点关系变压器(PRT)。全局自我关注操作捕获远程依赖性,以便分别增强搜索区域和模板的编码点特征。随后,我们通过横向关注匹配两组点特征来生成粗略跟踪结果。 3)基于粗略跟踪结果,我们采用了一种新颖的预测细化模块来获得最终精制预测。此外,我们根据Waymo Open DataSet创建一个大型点云单个对象跟踪基准。广泛的实验表明,PTTR以准确性和效率达到优越的点云跟踪。
translated by 谷歌翻译
基于激光雷达的3D单一对象跟踪是机器人技术和自动驾驶中的一个具有挑战性的问题。当前,现有方法通常会遇到长距离对象通常具有非常稀疏或部分倾斜的点云的问题,这使得模型含糊不清。模棱两可的功能将很难找到目标对象,并最终导致不良跟踪结果。为了解决此问题,我们使用功能强大的变压器体系结构,并为基于点云的3D单一对象跟踪任务提出一个点轨转换器(PTT)模块。具体而言,PTT模块通过计算注意力重量来生成微调的注意力特征,该功能指导追踪器的重点关注目标的重要功能,并提高复杂场景中的跟踪能力。为了评估我们的PTT模块,我们将PTT嵌入主要方法中,并构建一个名为PTT-NET的新型3D SOT跟踪器。在PTT-NET中,我们分别将PTT嵌入了投票阶段和提案生成阶段。投票阶段中的PTT模块可以模拟点斑块之间的交互作用,该点贴片学习上下文依赖于上下文。同时,提案生成阶段中的PTT模块可以捕获对象和背景之间的上下文信息。我们在Kitti和Nuscenes数据集上评估了PTT-NET。实验结果证明了PTT模块的有效性和PTT-NET的优越性,PTT-NET的优势超过了基线,在CAR类别中〜10%。同时,我们的方法在稀疏场景中也具有显着的性能提高。通常,变压器和跟踪管道的组合使我们的PTT-NET能够在两个数据集上实现最先进的性能。此外,PTT-NET可以在NVIDIA 1080TI GPU上实时以40fps实时运行。我们的代码是为研究社区开源的,网址为https://github.com/shanjiayao/ptt。
translated by 谷歌翻译
基于暹罗网络的跟踪器将3D单一对象跟踪作为模板和搜索区域的点特征之间的互相关学习。由于跟踪过程中模板和搜索区域之间的外观差异很大,因此如何学习它们之间的稳健跨相关性以识别搜索区域中的潜在目标仍然是一个挑战性的问题。在本文中,我们明确使用变压器形成一个3D Siamese变压器网络,以学习模板和点云的搜索区域之间的强大互相关。具体来说,我们开发了一个暹罗点变压器网络,以了解目标的形状上下文信息。它的编码器使用自我注意力来捕获点云的非本地信息来表征对象的形状信息,而解码器则利用交叉注意来提取歧视点特征。之后,我们开发了一个迭代的粗到加密相关网络,以了解模板与搜索区域之间的稳健跨相关性。它通过交叉注意将模板与搜索区域中的潜在目标联系起来,制定了交叉功能的增强。为了进一步增强潜在目标,它采用了自我功能增强,该增强功能将自我注意力应用于特征空间的本地K-NN图来汇总目标特征。 Kitti,Nuscenes和Waymo数据集的实验表明,我们的方法在3D单一对象跟踪任务上实现了最先进的性能。
translated by 谷歌翻译
由于动态环境中LIDAR点的稀缺性,3D对象跟踪仍然是一个具有挑战性的问题。在这项工作中,我们提出了一个暹罗体素到BEV跟踪器,可以显着提高稀疏3D点云中的跟踪性能。具体地,它包括暹罗形状感知特征学习网络和体素到BEV目标本地化网络。暹罗形式感知特征学习网络可以捕获对象的3D形状信息以学习对象的辨别特征,使得可以识别来自稀疏点云中的背景的潜在目标。为此,我们首先执行模板特征嵌入以将模板的特征嵌入到电位目标中,然后生成密集的3D形状以表征潜在目标的形状信息。为了本地化跟踪目标,Voxel-to-BeV目标本地化网络以无密集的鸟瞰图(BEV)特征图,将目标的2D中心和$ Z $ -Axis中心以无锚的方式回归。具体地,我们通过MAX池沿Z $ -axis压缩了Voxelized Point云,以获得密集的BEV特征图,其中可以更有效地执行2D中心和$ Z $ -Axis中心的回归。对基蒂和NUSCENES数据集的广泛评估表明,我们的方法通过大边距显着优于当前最先进的方法。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
使用点云的3D对象检测由于其在自动驾驶和机器人技术中的广泛应用而引起了越来越多的关注。但是,大多数现有的研究都集中在单点云框架上,而无需利用点云序列中的时间信息。在本文中,我们设计了Transpillars,这是一种基于变压器的新型特征聚合技术,可利用连续点云框架的时间特征用于多帧3D对象检测。从两个角度来看,转子汇总的时空点云特征。首先,它直接从多帧特征映射而不是汇总实例功能融合体素级特征,以保存实例详细信息,并使用上下文信息,这些信息对于准确的对象本地化至关重要。其次,它引入了分层的粗到精细策略,以逐步融合多尺度功能,以有效捕获移动对象的运动并指导精美特征的聚合。此外,引入了一系列可变形变压器,以提高跨帧功能匹配的有效性。广泛的实验表明,与现有的多帧检测方法相比,我们提议的转质质量可以达到最先进的性能。代码将发布。
translated by 谷歌翻译
当前3D单个对象跟踪方法根据目标模板和搜索区域之间的特征比较来跟踪目标。然而,由于LIDAR扫描中的常见闭塞,因此在严重的稀疏和不完全形状上进行准确的特征比较是不普遍的。在这项工作中,我们利用了第一帧中给出的地面真相边界框作为强大的提示,以增强目标对象的功能描述,以简单而有效的方式实现更准确的功能比较。特别是,我们首先提出BoxCloud,一种信息和强大的表示,以描述使用点对框的关系来描绘对象。我们进一步设计了一个有效的箱子感知功能融合模块,它利用上述BoxCloud进行可靠的功能匹配和嵌入。将提议的一般组件集成到现有型号P2B中,我们构建了一个卓越的盒子感知跟踪器(BAT)。实验证实,我们提出的BAT在基蒂和NUSCENES基准上的大幅度优于先前的最先进,在精度方面取得了15.2%的改善,同时运行速度〜20%。
translated by 谷歌翻译
基于查询的变压器在许多图像域任务中构建长期注意力方面表现出了巨大的潜力,但是由于点云数据的压倒性大小,在基于激光雷达的3D对象检测中很少考虑。在本文中,我们提出了CenterFormer,这是一个基于中心的变压器网络,用于3D对象检测。 CenterFormer首先使用中心热图在基于标准的Voxel点云编码器之上选择中心候选者。然后,它将中心候选者的功能用作变压器中的查询嵌入。为了进一步从多个帧中汇总功能,我们通过交叉注意设计一种方法来融合功能。最后,添加回归头以预测输出中心功能表示形式上的边界框。我们的设计降低了变压器结构的收敛难度和计算复杂性。结果表明,与无锚对象检测网络的强基线相比,有了显着改善。 CenterFormer在Waymo Open数据集上实现了单个模型的最新性能,验证集的MAPH为73.7%,测试集的MAPH上有75.6%的MAPH,大大优于所有先前发布的CNN和基于变压器的方法。我们的代码可在https://github.com/tusimple/centerformer上公开获取
translated by 谷歌翻译
基于点云的3D单一对象跟踪(3DSOT)吸引了越来越多的注意力。已经取得了许多突破,但我们也揭示了两个严重的问题。通过广泛的分析,我们发现当前方法的预测方式是非持bust的,即暴露了预测得分和实际定位精度之间的错位差距。另一个问题是稀疏点返回将损坏SOT任务的功能匹配过程。基于这些见解,我们介绍了两个新型模块,即自适应改进预测(ARP)和目标知识转移(TKT),以解决它们。为此,我们首先设计了强大的管道来提取区分特征,并使用注意机制进行匹配程序。然后,建议通过汇总所有具有宝贵线索的预测候选人来解决未对准问题。最后,由于稀疏和遮挡问题,TKT模块旨在有效克服不完整的点云。我们称我们的整体框架PCET。通过在Kitti和Waymo Open数据集上进行广泛的实验,我们的模型可以实现最新的性能,同时保持较低的计算消耗。
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
近年来,由于深度学习技术的发展,LiDar Point Clouds的3D对象检测取得了长足的进步。尽管基于体素或基于点的方法在3D对象检测中很受欢迎,但它们通常涉及耗时的操作,例如有关体素的3D卷积或点之间的球查询,从而使所得网络不适合时间关键应用程序。另一方面,基于2D视图的方法具有较高的计算效率,而通常比基于体素或基于点的方法获得的性能低。在这项工作中,我们提出了一个基于实时视图的单阶段3D对象检测器,即CVFNET完成此任务。为了在苛刻的效率条件下加强跨视图的学习,我们的框架提取了不同视图的特征,并以有效的渐进式方式融合了它们。我们首先提出了一个新颖的点范围特征融合模块,该模块在多个阶段深入整合点和范围视图特征。然后,当将所获得的深点视图转换为鸟类视图时,特殊的切片柱旨在很好地维护3D几何形状。为了更好地平衡样品比率,提出了一个稀疏的柱子检测头,将检测集中在非空网上。我们对流行的Kitti和Nuscenes基准进行了实验,并以准确性和速度来实现最先进的性能。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译