本文研究了通过机器学习模型估计特征对特定实例预测的贡献的问题,以及功能对模型的总体贡献。特征(变量)对预测结果的因果效应反映了该特征对预测的贡献。一个挑战是,如果没有已知的因果图,就无法从数据中估算大多数现有的因果效应。在本文中,我们根据假设的理想实验定义了解释性因果效应。该定义给不可知论的解释带来了一些好处。首先,解释是透明的,具有因果关系。其次,解释性因果效应估计可以数据驱动。第三,因果效应既提供了特定预测的局部解释,又提供了一个全局解释,显示了一个特征在预测模型中的总体重要性。我们进一步提出了一种基于解释性因果效应来解释的方法和组合变量的方法。我们显示了对某些现实世界数据集的实验的定义和方法。
translated by 谷歌翻译
在个性化决策中,需要证据来确定诉讼(治疗)是否适合个人。可以通过对亚组中的治疗效应异质性进行建模来获得此类证据。现有的可解释的建模方法采用自上而下的方法来寻找具有异质治疗效果的亚组,它们可能会错过个人最具体和最相关的环境。在本文中,我们设计了\ emph {治疗效果模式(TEP)}来表示数据中的治疗效果异质性。为了实现TEP的可解释呈现,我们使用围绕结果的局部因果结构,以明确说明如何在建模中使用这些重要变量。我们还得出了一个公正估计\ emph {条件平均因果效应(CATE)}的公式,它使用我们的问题设置中的局部结构进行了估计。在发现过程中,我们旨在最大程度地减少以模式表示的每个子组中的异质性。我们提出了一种自下而上的搜索算法,以发现适合个性化决策的最具体情况的最特定模式。实验表明,所提出的方法模型治疗效果的异质性比合成和现实世界数据集中的其他三种基于树的方法更好。
translated by 谷歌翻译
在科学研究和现实世界应用的许多领域中,非实验数据的因果效应的无偏估计对于理解数据的基础机制以及对有效响应或干预措施的决策至关重要。从不同角度对这个具有挑战性的问题进行了大量研究。对于数据中的因果效应估计,始终做出诸如马尔可夫财产,忠诚和因果关系之类的假设。在假设下,仍然需要一组协变量或基本因果图之类的全部知识。一个实用的挑战是,在许多应用程序中,没有这样的全部知识或只有某些部分知识。近年来,研究已经出现了基于图形因果模型的搜索策略,以从数据中发现有用的知识,以进行因果效应估计,并具有一些温和的假设,并在应对实际挑战方面表现出了诺言。在这项调查中,我们回顾了方法,并关注数据驱动方法所面临的挑战。我们讨论数据驱动方法的假设,优势和局限性。我们希望这篇综述将激励更多的研究人员根据图形因果建模设计更好的数据驱动方法,以解决因果效应估计的具有挑战性的问题。
translated by 谷歌翻译
考虑基于AI和ML的决策对这些新兴技术的安全和可接受的使用的决策的社会和道德后果至关重要。公平,特别是保证ML决定不会导致对个人或少数群体的歧视。使用因果关系,可以更好地实现和衡量可靠的公平/歧视,从而更好地实现了敏感属性(例如性别,种族,宗教等)之间的因果关系,仅仅是仅仅是关联,例如性别,种族,宗教等(例如,雇用工作,贷款授予等) )。然而,对因果关系解决公平性的最大障碍是因果模型的不可用(通常表示为因果图)。文献中现有的因果关系方法并不能解决此问题,并假设可获得因果模型。在本文中,我们没有做出这样的假设,并且我们回顾了从可观察数据中发现因果关系的主要算法。这项研究的重点是因果发现及其对公平性的影响。特别是,我们展示了不同的因果发现方法如何导致不同的因果模型,最重要的是,即使因果模型之间的轻微差异如何对公平/歧视结论产生重大影响。通过使用合成和标准公平基准数据集的经验分析来巩固这些结果。这项研究的主要目标是强调因果关系使用因果关系适当解决公平性的因果发现步骤的重要性。
translated by 谷歌翻译
不观察到的混淆是观测数据的因果效应估计的主要障碍。仪器变量(IVS)广泛用于存在潜在混淆时的因果效应估计。利用标准IV方法,当给定的IV有效时,可以获得无偏估计,但标准IV的有效性要求是严格和不可能的。已经提出了通过调节一组观察变量(称为条件IV的调节装置)来放松标准IV的要求。然而,用于查找条件IV的调节集的标准需要完整的因果结构知识或指向的非循环图(DAG),其代表观察到和未观察的变量的因果关系。这使得无法发现直接从数据设置的调节。在本文中,通过利用潜在变量的因果推断中的最大祖先图(MAGS),我们提出了一种新型的MAG中的IV,祖先IV,并开发了支持给定祖传的调节装置的数据驱动的发现iv在mag。基于该理论,我们在MAG和观测数据中开发了一种与祖先IV的非偏见因果效应估计的算法。与现有IV方法相比,对合成和实际数据集的广泛实验表明了算法的性能。
translated by 谷歌翻译
In this review, we discuss approaches for learning causal structure from data, also called causal discovery. In particular, we focus on approaches for learning directed acyclic graphs (DAGs) and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.
translated by 谷歌翻译
We explore how observational and interventional causal discovery methods can be combined. A state-of-the-art observational causal discovery algorithm for time series capable of handling latent confounders and contemporaneous effects, called LPCMCI, is extended to profit from casual constraints found through randomized control trials. Numerical results show that, given perfect interventional constraints, the reconstructed structural causal models (SCMs) of the extended LPCMCI allow 84.6% of the time for the optimal prediction of the target variable. The implementation of interventional and observational causal discovery is modular, allowing causal constraints from other sources. The second part of this thesis investigates the question of regret minimizing control by simultaneously learning a causal model and planning actions through the causal model. The idea is that an agent to optimize a measured variable first learns the system's mechanics through observational causal discovery. The agent then intervenes on the most promising variable with randomized values allowing for the exploitation and generation of new interventional data. The agent then uses the interventional data to enhance the causal model further, allowing improved actions the next time. The extended LPCMCI can be favorable compared to the original LPCMCI algorithm. The numerical results show that detecting and using interventional constraints leads to reconstructed SCMs that allow 60.9% of the time for the optimal prediction of the target variable in contrast to the baseline of 53.6% when using the original LPCMCI algorithm. Furthermore, the induced average regret decreases from 1.2 when using the original LPCMCI algorithm to 1.0 when using the extended LPCMCI algorithm with interventional discovery.
translated by 谷歌翻译
我们研究了因果结构学习的问题,没有关于功能关系和噪声的假设。我们开发DAG-Foci,这是一种基于\ Cite {Azadkia2019Simple}的焦点变量选择算法的计算快速算法。DAG-Foci不需要调整参数并输出父母和Markov边界的响应变量的响应变量。当底层图形是多料时,我们提供了我们程序的高维保证。此外,我们展示了DAG-Foci在计算生物学\ Cite {Sachs2005Causal}的真实数据上的适用性,并说明了我们对侵犯假设的方法的稳健性。
translated by 谷歌翻译
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
translated by 谷歌翻译
元学习用于通过组合数据和先验知识来有效地自动选择机器学习模型。由于传统的元学习技术缺乏解释性,并且在透明度和公平性方面存在缺点,因此实现元学习的解释性至关重要。本文提出了一个可解释的元学习框架,该框架不仅可以解释元学习算法选择的建议结果,而且还可以对建议算法在特定数据集中的性能和业务场景中更完整,更准确地解释。通过广泛的实验证明了该框架的有效性和正确性。
translated by 谷歌翻译
反事实推断是一种强大的工具,能够解决备受瞩目的领域中具有挑战性的问题。要进行反事实推断,需要了解潜在的因果机制。但是,仅凭观察和干预措施就不能独特地确定因果机制。这就提出了一个问题,即如何选择因果机制,以便在给定领域中值得信赖。在具有二进制变量的因果模型中已经解决了这个问题,但是分类变量的情况仍未得到解答。我们通过为具有分类变量的因果模型引入反事实排序的概念来应对这一挑战。为了学习满足这些约束的因果机制,并对它们进行反事实推断,我们引入了深层双胞胎网络。这些是深层神经网络,在受过训练的情况下,可以进行双网络反事实推断 - 一种替代绑架,动作和预测方法的替代方法。我们从经验上测试了来自医学,流行病学和金融的多种现实世界和半合成数据的方法,并报告了反事实概率的准确估算,同时证明了反事实订购时不执行反事实的问题。
translated by 谷歌翻译
公平的机器学习旨在避免基于\ textit {敏感属性}(例如性别和种族)对个人或子人群的治疗。公平机器学习中的那些方法是基于因果推理确定的歧视和偏见的。尽管基于因果关系的公平学习吸引了越来越多的关注,但当前的方法假设真正的因果图是完全已知的。本文提出了一种一般方法,以实现反事实公平的概念时,当真实的因果图未知。为了能够选择导致反事实公平性的功能,我们得出了条件和算法,以识别\ textit上变量之间的祖先关系{部分定向的无循环图(pdag)},具体来说,可以从一类可学到的dag中学到。观察数据与域知识相结合。有趣的是,我们发现可以实现反事实公平,就好像真正的因果图是完全知道的一样,当提供了特定的背景知识时:敏感属性在因果图中没有祖先。模拟和实际数据集的结果证明了我们方法的有效性。
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
估计治疗如何单独影响单位(称为异质治疗效果(HTE)估计)是决策和政策实施的重要组成部分。许多领域中大量数据的积累,例如医疗保健和电子商务,导致人们对开发数据驱动算法的兴趣增加,以估算观察性和实验数据中的异质效应。但是,这些方法通常对观察到的特征做出了强有力的假设,而忽略了基本的因果模型结构,从而导致HTE估计。同时,考虑到现实世界数据的因果结构很少是微不足道的,因为产生数据的因果机制通常是未知的。为了解决此问题,我们开发了一种功能选择方法,该方法考虑了每个功能的估计值,并从数据中学习了因果结构的相关部分。我们提供了有力的经验证据,表明我们的方法改善了在任意基本因果结构下的现有数据驱动的HTE估计方法。我们关于合成,半合成和现实世界数据集的结果表明,我们的特征选择算法导致HTE估计误差较低。
translated by 谷歌翻译
因果发现已成为希望从观察数据中发现因果关系的科学家和从业者的重要工具。尽管大多数先前的因果发现方法都隐含地假设没有专家领域知识可用,但从业者通常可以从先前的经验中提供此类域知识。最近的工作已将域知识纳入基于约束的因果发现中。但是,大多数基于约束的方法都假定因果忠诚,这在实践中经常被违反。因此,人们对基于精确搜索得分的因果发现方法的重新关注,这些方法不假定因果关系,例如基于*基于*的方法。但是,在领域知识的背景下,没有考虑这些方法。在这项工作中,我们专注于有效地将几种类型的领域知识整合到基于*的因果发现中。在此过程中,我们讨论并解释了域知识如何减少图形搜索空间,然后对潜在的计算收益进行分析。我们通过有关合成和真实数据的实验来支持这些发现,表明即使少量领域知识也可以显着加快基于*基于*的因果关系并提高其绩效和实用性。
translated by 谷歌翻译
可解释的人工智能(XAI)是一系列技术,可以理解人工智能(AI)系统的技术和非技术方面。 Xai至关重要,帮助满足\ emph {可信赖}人工智能的日益重要的需求,其特点是人类自主,防止危害,透明,问责制等的基本特征,反事实解释旨在提供最终用户需要更改的一组特征(及其对应的值)以实现所需的结果。目前的方法很少考虑到实现建议解释所需的行动的可行性,特别是他们缺乏考虑这些行为的因果影响。在本文中,我们将反事实解释作为潜在空间(CEILS)的干预措施,一种方法来生成由数据从数据设计潜在的因果关系捕获的反事实解释,并且同时提供可行的建议,以便到达所提出的配置文件。此外,我们的方法具有以下优点,即它可以设置在现有的反事实发生器算法之上,从而最小化施加额外的因果约束的复杂性。我们展示了我们使用合成和实际数据集的一组不同实验的方法的有效性(包括金融领域的专有数据集)。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
我们分析了在没有特定分布假设的常规设置中从观察数据的学习中学循环图形模型的复杂性。我们的方法是信息定理,并使用本地马尔可夫边界搜索程序,以便在基础图形模型中递归地构建祖先集。也许令人惊讶的是,我们表明,对于某些图形集合,一个简单的前向贪婪搜索算法(即没有向后修剪阶段)足以学习每个节点的马尔可夫边界。这显着提高了我们在节点的数量中显示的样本复杂性。然后应用这一点以在从文献中概括存在现有条件的新型标识性条件下学习整个图。作为独立利益的问题,我们建立了有限样本的保障,以解决从数据中恢复马尔可夫边界的问题。此外,我们将我们的结果应用于特殊情况的Polytrees,其中假设简化,并提供了多项识别的明确条件,并且在多项式时间中可以识别和可知。我们进一步说明了算法在仿真研究中易于实现的算法的性能。我们的方法是普遍的,用于无需分布假设的离散或连续分布,并且由于这种棚灯对有效地学习来自数据的定向图形模型结构所需的最小假设。
translated by 谷歌翻译
转移学习中最关键的问题之一是域适应的任务,其中目标是将在一个或多个源域中培训的算法应用于不同(但相关)的目标域。本文在域内存在协变量转变时,涉及域适应。解决此问题的现有因果推断方法的主要限制之一是可扩展性。为了克服这种困难,我们提出了一种避免穷举搜索的算法,并识别基于Markov毯子发现的源和目标域的不变因果特征。 SCTL不需要先前了解因果结构,干预措施的类型或干预目标。有一个与SCTL相关的内在位置,使其实现实际上可扩展且稳健,因为本地因果发现增加了计算独立性测试的力量,并使域适配的任务进行了计算地进行了易行的。我们通过低维和高维设置中的合成和实际数据集显示SCTL的可扩展性和稳健性。
translated by 谷歌翻译