图像分类模型可以取决于图像的多个不同语义属性。对分类器的决定的说明需要对这些属性进行发现和可视化这些属性。在这里,我们通过训练生成模型来具体解释基于分类器决策的多个属性来实现这一点的样式x。此类属性的自然来源是样式语的风格,已知在图像中生成语义有意义的维度。但是,由于标准GaN训练不依赖于分类器,所以它可能不代表对分类器决定很重要的这些属性,并且风格的尺寸可以表示无关属性。为了克服这一点,我们提出了一种培训程序,该培训程序包括分类器模型,以便学习特定于分类器的风格。然后从该空间中选择解释性属性。这些可用于可视化每个图像改变多个属性的效果,从而提供特定于图像的解释。我们将风格x应用于多个域,包括动物,叶子,面和视网膜图像。为此,我们展示了如何以不同方式修改图像以改变其分类器输出。我们的结果表明,该方法发现与语义上保持良好的属性,生成有意义的图像特定的解释,并且是在用户研究中测量的人为解释。
translated by 谷歌翻译
尽管它们的准确性很高,但由于未知的决策过程和潜在的偏见,现代复杂的图像分类器不能被敏感任务受到信任。反事实解释非常有效地为这些黑盒算法提供透明度。然而,生成可能对分类器输出产生一致影响并揭示可解释的特征更改的反事实是一项非常具有挑战性的任务。我们介绍了一种新颖的方法,可以使用验证的生成模型为图像分类器生成因果关系但可解释的反事实解释,而无需进行任何重新训练或调节。该技术中的生成模型不可能在与目标分类器相同的数据上进行训练。我们使用此框架来获得对比度和因果关系,并作为黑盒分类器的全球解释。在面部属性分类的任务上,我们通过提供因果和对比特征属性以及相应的反事实图像来展示不同属性如何影响分类器输出。
translated by 谷歌翻译
改变特定特征但不是其他特性的输入扰动的反事实示例 - 已经显示用于评估机器学习模型的偏差,例如,对特定的人口组。然而,由于图像的各种特征上的底层的因果结构,生成用于图像的反事实示例是非琐碎的。为了有意义,生成的扰动需要满足因果模型所暗示的约束。我们通过在前瞻性学习推断(ALI)的改进变型中结合结构因果模型(SCM)来提出一种方法,该方法是根据图像的属性之间的因果关系生成反事实。基于所生成的反事实,我们展示了如何解释预先训练的机器学习分类器,评估其偏置,并使用反事实程序缓解偏差。在Morpho-Mnist DataSet上,我们的方法会在质量上产生与基于SCM的Factficuls(DeepScm)的质量相当的反功能,而在更复杂的Celeba DataSet上,我们的方法优于DeepScm在产生高质量的有效反应性时。此外,生成的反事件难以从人类评估实验中的重建图像中无法区分,并且随后使用它们来评估在Celeba数据上培训的标准分类器的公平性。我们表明分类器是偏见的w.r.t.皮肤和头发颜色,以及反事实规则化如何消除这些偏差。
translated by 谷歌翻译
由于深度学习模型越来越多地用于安全关键应用,可解释性和可信度成为主要问题。对于简单的图像,例如低分辨率面部肖像,最近已经提出了综合视觉反事实解释作为揭示训练分类模型的决策机制的一种方法。在这项工作中,我们解决了为高质量图像和复杂场景产生了反事实解释的问题。利用最近的语义到图像模型,我们提出了一种新的生成反事实解释框架,可以产生卓越的稀疏修改,该框架可以保护整体场景结构。此外,我们介绍了“区域目标反事实解释”的概念和相应的框架,其中用户可以通过指定查询图像的一组语义区域来指导反事实的生成说明必须是关于的。在具有挑战性的数据集中进行了广泛的实验,包括高质量的肖像(Celebamask-HQ)和驾驶场景(BDD100K)。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
医学图像分析中使用的深度学习模型很容易由于其黑盒性质而引起的可靠性问题。为了阐明这些黑盒模型,先前的作品主要集中在识别输入特征对诊断的贡献,即功能归因。在这项工作中,我们探讨了反事实解释,以确定模型依赖于诊断的模式。具体而言,我们研究了胸部X射线内变化特征对分类器输出的影响,以了解其决策机制。我们利用一种基于样式的方法(StyleEx)来通过操纵其潜在空间中的特定潜在方向来为胸部X射线射线创建反事实解释。此外,我们建议本本芬大大减少生成解释的计算时间。我们在放射科医生的帮助下临床评估反事实解释的相关性。我们的代码公开可用。
translated by 谷歌翻译
深度神经网络的成功严重依赖于他们在其投入和其产出之间编码复杂关系的能力。虽然此属性适用于培训数据,但它也掩盖了驱动预测的机制。本研究旨在通过采用基于离散变分的自动化器来改变预测类的干预机制来揭示隐藏的概念。然后,解释模型从任何隐藏层和相应的介入表示可视化编码信息。通过评估原始代表与介入代表之间的差异,可以确定可以改变该类的概念,从而提供可解释性。我们展示了我们在Celeba上的方法的有效性,在那里我们对数据中的偏见显示了各种可视化,并建议揭示和改变偏见的不同干预措施。
translated by 谷歌翻译
Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{https://enisimsar.github.io/latentswap3d/}.
translated by 谷歌翻译
当前的大多数解释性技术都集中在捕获输入空间中特征的重要性。但是,鉴于模型和数据生成过程的复杂性,由此产生的解释远非“完整”,因为它们缺乏特征相互作用和可视化其“效应”的指示。在这项工作中,我们提出了一个新颖的双流式解释性框架,以解释任何基于CNN的图像分类器(架构不考虑)做出的决定。为此,我们首先将潜在特征从分类器中解开,然后将这些功能与观察到的/人为定义的“上下文”功能保持一致。这些对齐特征形成了具有语义上有意义的概念,用于提取描述“感知”数据生成过程的因果图,描述了未观察到的潜在特征和观察到的“上下文”特征之间的功能间和内部内部和内部内部相互作用。该因果图是一个全局模型,可以从中提取不同形式的局部解释。具体而言,我们提供了一个生成器来可视化潜在空间中特征之间交互的“效果”,并从其作为局部解释中提取特征的重要性。我们的框架利用对抗性知识蒸馏来忠实地从分类器的潜在空间中学习表示形式,并将其用于提取视觉解释。我们使用带有附加正规化术语的stylegan-v2体系结构来执行分解和对齐。我们证明并评估了通过关于Morpho-Mnist和FFHQ人脸数据集获得的解释。我们的框架可在\ url {https://github.com/koriavinash1/glance-explanations}上获得。
translated by 谷歌翻译
We explore and analyze the latent style space of Style-GAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of channel-wise style parameters, is significantly more disentangled than the other intermediate latent spaces explored by previous works. Next, we describe a method for discovering a large collection of style channels, each of which is shown to control a distinct visual attribute in a highly localized and disentangled manner. Third, we propose a simple method for identifying style channels that control a specific attribute, using a pretrained classifier or a small number of example images. Manipulation of visual attributes via these StyleSpace controls is shown to be better disentangled than via those proposed in previous works. To show this, we make use of a newly proposed Attribute Dependency metric. Finally, we demonstrate the applicability of StyleSpace controls to the manipulation of real images. Our findings pave the way to semantically meaningful and well-disentangled image manipulations via simple and intuitive interfaces.
translated by 谷歌翻译
生成对抗网络(GAN)已广泛应用于建模各种图像分布。然而,尽管具有令人印象深刻的应用,但甘恩(Gans)中潜在空间的结构在很大程度上仍然是一个黑框,使其可控的一代问题是一个开放的问题,尤其是当图像分布中存在不同语义属性之间的虚假相关性时。为了解决此问题,以前的方法通常会学习控制图像空间中语义属性的线性方向或单个通道。但是,他们通常会遭受不完美的分解,或者无法获得多向控制。在这项工作中,根据上述挑战,我们提出了一种新的方法,可以发现非线性控件,该方法基于学识渊博的gan潜在空间中的梯度信息,可以实现多个方向的操作以及有效的分解。更具体地说,我们首先通过从对属性分别训练的分类网络中遵循梯度来学习插值方向,然后通过专门控制针对目标属性在学习的方向上激活目标属性的通道来导航潜在空间。从经验上讲,借助小型培训数据,我们的方法能够获得对各种双向和多方向属性的细粒度控制,并且我们展示了其实现分离的能力,其能力明显优于先进方法。定性和定量。
translated by 谷歌翻译
视觉反事实解释用来自干扰器图像的区域代替了查询图像中的图像区域,以使系统对转换图像的决策变为干扰器类。在这项工作中,我们提出了一个新颖的框架,用于根据两个关键思想计算视觉反事实说明。首先,我们强制执行替换和替换区域包含相同的语义部分,从而产生了更加一致的解释。其次,我们以计算上有效的方式使用多个干扰器图像,并获得更少的区域替代方法的更多歧视性解释。我们的方法在语义上一致性高27%,并且比三个细粒图像识别数据集的竞争方法要快27%。我们通过机器教学实验来强调反事实对现有作品的实用性,在这些实验中,我们教人类对不同的鸟类进行分类。我们还用零件和属性的词汇来补充我们的解释,这些零件和属性对系统的决定有所帮助。在此任务中,当使用相对于现有作品的反事实解释时,我们将获得最新的结果,从而增强了语义一致的解释的重要性。源代码可从https://github.com/facebookresearch/visual-counterfactuals获得。
translated by 谷歌翻译
由于自然语言处理和基于计算机视觉模型的显着进步,视觉问题应答(VQA)系统变得越来越聪明,高级。然而,在处理相对复杂的问题时,它们仍然易于出错。因此,在采用结果之前了解VQA模型的行为非常重要。在本文中,我们通过生成反事实图像来引入VQA模型的可解释方法。具体地,所生成的图像应该具有对原始图像具有最小可能的改变,并引导VQA模型来提供不同的答案。此外,我们的方法确保生成的图像是逼真的。由于无法使用定量度量来评估模型的可解释性,因此我们进行了用户学习,以评估我们方法的不同方面。除了在单个图像上解释VQA模型的结果,所获得的结果和讨论还提供了对VQA模型的行为的广泛解释。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
对于使用高性能机器学习算法通常不透明的决策,人们越来越担心。用特定于领域的术语对推理过程的解释对于在医疗保健等风险敏感领域中采用至关重要。我们认为,机器学习算法应该可以通过设计来解释,并且表达这些解释的语言应与域和任务有关。因此,我们将模型的预测基于数据的用户定义和特定于任务的二进制函数,每个都对最终用户有明确的解释。然后,我们最大程度地减少了在任何给定输入上准确预测所需的预期查询数。由于解决方案通常是棘手的,因此在事先工作之后,我们根据信息增益顺序选择查询。但是,与以前的工作相反,我们不必假设查询在有条件地独立。取而代之的是,我们利用随机生成模型(VAE)和MCMC算法(未经调整的Langevin)来选择基于先前的查询 - 答案的输入的最有用的查询。这使得在线确定要解决预测歧义所需的任何深度的查询链。最后,关于视觉和NLP任务的实验证明了我们的方法的功效及其优越性比事后解释的优势。
translated by 谷歌翻译
现在,使用最近的生成对抗网络(GAN)可以使用高现实主义的不受约束图像产生。但是,用给定的一组属性生成图像非常具有挑战性。最近的方法使用基于样式的GAN模型来执行图像编辑,通过利用发电机层中存在的语义层次结构。我们提出了一些基于潜在的属性操纵和编辑(火焰),这是一个简单而有效的框架,可通过潜在空间操纵执行高度控制的图像编辑。具体而言,我们估计了控制生成图像中语义属性的潜在空间(预训练样式的)中的线性方向。与以前的方法相反,这些方法依赖于大规模属性标记的数据集或属性分类器,而火焰则使用一些策划的图像对的最小监督来估算删除的编辑指示。火焰可以在保留身份的同时,在各种图像集上同时进行高精度和顺序编辑。此外,我们提出了一项新颖的属性样式操纵任务,以生成各种样式的眼镜和头发等属性。我们首先编码相同身份的一组合成图像,但在潜在空间中具有不同的属性样式,以估计属性样式歧管。从该歧管中采样新的潜在将导致生成图像中的新属性样式。我们提出了一种新颖的抽样方法,以从歧管中采样潜在的样品,使我们能够生成各种属性样式,而不是训练集中存在的样式。火焰可以以分离的方式生成多种属性样式。我们通过广泛的定性和定量比较来说明火焰与先前的图像编辑方法相对于先前的图像编辑方法的卓越性能。火焰在多个数据集(例如汽车和教堂)上也很好地概括了。
translated by 谷歌翻译
自解释深层模型旨在在训练期间隐含地学习基于潜在的概念的解释,从而消除了任何HOC后期解释生成技术的要求。在这项工作中,我们提出了一种这样的模型,该模型将解释生成模块附加在任何基本网络的顶部,并共同列举显示出高预测性能的整个模块,并在概念方面产生有意义的解释。与基线方法相比,我们的培训策略适用于无监督的概念学习,与基线方法相比具有更大的参数空间要求。我们拟议的模式还规定了利用自我监督对概念来提取更好的解释。然而,通过完整的概念监督,与最近提出的基于概念的可解释模型相比,我们实现了最佳预测性能。我们通过我们的方法报告了定性和定量结果,这表明了比最近提出的基于概念的解释方法更好的性能。我们报告了一个没有地面真理概念的两个数据集,即CiFar10,ImageNet和两个具有地面真理概念的数据集,即AWA2,Cub-200,以显示我们两种情况的方法。据我们所知,我们是第一批展示诸如ImageNet的大规模数据集的结果。
translated by 谷歌翻译
Stylegan的成功使得在合成和真实图像上启用了前所未有的语义编辑能力。然而,这种编辑操作要么是使用人类指导的语义监督或描述的培训。在另一个开发中,剪辑架构已被互联网级图像和文本配对培训,并且已被示出在几个零拍摄学习设置中有用。在这项工作中,我们调查了如何有效地链接样式登录和剪辑的预训练潜空间,这反过来允许我们从Stylegan,查找和命名有意义的编辑操作自动提取语义标记的编辑方向,而无需任何额外的人类指导。从技术上讲,我们提出了两块新颖的建筑块;一个用于查找有趣的夹子方向,一个用于在CLIP潜在空间中标记任意方向。安装程序不假设任何预定的标签,因此我们不需要任何其他监督文本/属性来构建编辑框架。我们评估所提出的方法的有效性,并证明了解标记标记的样式编辑方向的提取确实可能,并揭示了有趣和非琐碎的编辑方向。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
在GAN的潜在空间中发现有意义的方向来操纵语义属性通常需要大量标记的数据。最近的工作旨在通过利用对比语言图像预训练(CLIP),联合文本图像模型来克服这种限制。在有希望的同时,这些方法需要几个小时的预处理或培训来达到所需的操纵。在本文中,我们展示了Stylemc,一种快速有效的文本驱动图像生成和操纵方法。 Stylemc使用基于剪辑的丢失和身份丢失来通过单个文本提示来操纵图像,而不会显着影响其他属性。与现有工作不同,Stylemc只需要几秒钟的每个文本提示培训,以找到稳定的全局方向,不需要提示工程,可以与任何预先训练的样式模型一起使用。我们展示了我们方法的有效性,并将其与最先进的方法进行比较。我们的代码可以在http://catlab-team.github.io/stylemc找到。
translated by 谷歌翻译