对于人工智能在生物学和药物中产生更大的影响,这是一个至关重要的是,建议都是准确和透明的。在其他域中,已经显示了关于知识图表的多跳推理的神经统计学方法,以产生透明的解释。然而,缺乏研究将其应用于复杂的生物医学数据集和问题。在本文中,探讨了药物发现的方法,以利用其适用性的稳定结论。我们首次系统地将其应用于多种生物医学数据集和具有公平基准比较的推荐任务。发现该方法以平均水平的21.7%优于21.7%,同时产生新颖,生物学相关的解释。
translated by 谷歌翻译
改善疾病的护理标准是关于更好的治疗方法,反过来依赖于寻找和开发新药。然而,药物发现是一个复杂且昂贵的过程。通过机器学习的方法采用了利用域固有的互连性质的药物发现知识图的创建。基于图形的数据建模,结合知识图形嵌入式提供了更直观的域表示,适用于推理任务,例如预测缺失链路。一个这样的例子将产生对给定疾病的可能相关基因的排名列表,通常被称为目标发现。因此,这是关键的,即这些预测不仅是相关的,而且是生物学上的有意义的。然而,知识图形可以直接偏向,由于集成的底层数据源,或者由于图形构造中的建模选择,其中的一个结果是某些实体可以在拓扑上超越。我们展示了知识图形嵌入模型可能受到这种结构不平衡的影响,导致无论上下文都要高度排名的密集连接实体。我们在不同的数据集,模型和预测任务中提供对此观察的支持。此外,我们展示了如何通过随机,生物学上无意义的信息扰乱图形拓扑结构以人为地改变基因的等级。这表明这种模型可能会受到实体频率而不是在关系中编码的生物学信息的影响,当实体频率不是基础数据的真实反射时,创建问题。我们的结果突出了数据建模选择的重要性,并强调了从业者在解释模型输出和知识图形组合期间时要注意这些问题。
translated by 谷歌翻译
药物发现和发展是一个复杂和昂贵的过程。正在研究机器学习方法,以帮助提高药物发现管道多个阶段的有效性和速度。其中,使用知识图表(kg)的那些在许多任务中具有承诺,包括药物修复,药物毒性预测和靶基因疾病优先级。在药物发现kg中,包括基因,疾病和药物在内的关键因素被认为是实体,而它们之间的关系表示相互作用。但是,为了构建高质量的KG,需要合适的数据。在这篇综述中,我们详细介绍了适用于构建聚焦KGS的药物发现的公开使用来源。我们的目标是帮助引导机器学习和kg从业者对吸毒者发现领域应用新技术,但是谁可能不熟悉相关的数据来源。通过严格的标准选择数据集,根据包含内部包含的主要信息类型,并基于可以提取的信息来进行分类以构建kg。然后,我们对现有的公共药物发现KGS进行了比较分析,并评估了文献中所选择的激励案例研究。此外,我们还提出了众多和与域及其数据集相关的众多挑战和问题,同时突出了关键的未来研究方向。我们希望本综述将激励KGS在药物发现领域的关键和新兴问题中使用。
translated by 谷歌翻译
由于对高效有效的大数据分析解决方案的需求,医疗保健行业中数据分析的合并已取得了重大进展。知识图(KGS)已在该领域证明了效用,并且植根于许多医疗保健应用程序,以提供更好的数据表示和知识推断。但是,由于缺乏代表性的kg施工分类法,该指定领域中的几种现有方法不足和劣等。本文是第一个提供综合分类法和鸟类对医疗kg建筑的眼光的看法。此外,还对与各种医疗保健背景相关的学术工作中最新的技术进行了彻底的检查。这些技术是根据用于知识提取的方法,知识库和来源的类型以及合并评估协议的方法进行了严格评估的。最后,报道和讨论了文献中的一些研究发现和现有问题,为这个充满活力的地区开放了未来研究的视野。
translated by 谷歌翻译
基于强化学习(RL)的图表行走在导航代理人通过探索多跳关系路径来导航代理以通过不完整的知识图(kg)来自动完成各种推理任务。然而,现有的多跳推理方法仅在短路推理路径上工作,并且倾向于利用增加的路径长度错过目标实体。这对于实际情况中的许多理由任务是不可取的,其中连接源实体的短路不完整的公斤,因此,除非代理能够寻求更多的线索,否则推理性能急剧下降路径。为了解决上述挑战,在本文中,我们提出了一种双代理强化学习框架,该框架列举了两个代理(巨型和矮人),共同走过了公斤,并协同寻找答案。我们的方法通过将其中一个代理(巨型)进行了快速寻找群集路径并为另一代理(DWARF)提供阶段明智的提示来解决长途路径中的推理挑战。最后,对几千克推理基准测试的实验结果表明,我们的方法可以更准确,高效地搜索答案,并且优于大型余量的长路径查询的基于RL的基于RL的方法。
translated by 谷歌翻译
Graph mining tasks arise from many different application domains, ranging from social networks, transportation to E-commerce, etc., which have been receiving great attention from the theoretical and algorithmic design communities in recent years, and there has been some pioneering work employing the research-rich Reinforcement Learning (RL) techniques to address graph data mining tasks. However, these graph mining methods and RL models are dispersed in different research areas, which makes it hard to compare them. In this survey, we provide a comprehensive overview of RL and graph mining methods and generalize these methods to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method descriptions, open-source codes, and benchmark datasets of GRL methods. Furthermore, we propose important directions and challenges to be solved in the future. As far as we know, this is the latest work on a comprehensive survey of GRL, this work provides a global view and a learning resource for scholars. In addition, we create an online open-source for both interested scholars who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
各种网络的部署(例如,事物互联网(IOT)和移动网络),数据库(例如,营养表和食品组成数据库)和社交媒体(例如,Instagram和Twitter)产生大量的多型食品数据,这在食品科学和工业中起着关键作用。然而,由于众所周知的数据协调问题,这些多源食品数据显示为信息孤岛,导致难以充分利用这些食物数据。食物知识图表提供了统一和标准化的概念术语及其结构形式的关系,因此可以将食物信息孤单转换为更可重复使用的全球数量数字连接的食物互联网以使各种应用有益。据我们所知,这是食品科学与工业中食品知识图表的第一个全面审查。我们首先提供知识图表的简要介绍,然后主要从食物分类,食品本体到食品知识图表的进展。粮食知识图表的代表性应用将在新的配方开发,食品可追溯性,食物数据可视化,个性化饮食推荐,食品搜索和质询回答,视觉食品对象识别,食品机械智能制造方面来概述。我们还讨论了该领域的未来方向,例如食品供应链系统和人类健康的食品知识图,这应该得到进一步的研究。他们的巨大潜力将吸引更多的研究努力,将食物知识图形应用于食品科学和工业领域。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
越来越多的语义资源提供了人类知识的宝贵储存;但是,错误条目的概率随着尺寸的增加而增加。因此,识别给定知识库的潜在虚假部分的方法正在成为越来越重要的感兴趣领域。在这项工作中,我们展示了对仅结构的链接分析方法的系统评估是否可以提供可扩展手段,以检测可能的异常,以及潜在的有趣的新颖关系候选者。在八种不同的语义资源中评估十三方法,包括基因本体,食品本体,海洋本体论和类似,我们证明了仅限结构的链接分析可以为数据集的子集提供可扩展的异常检测。此外,我们证明,通过考虑符号节点嵌入,可以获得预测(链接)的说明,使得该方法的该分支可能比黑盒更有价值。据我们所知,这是目前,来自不同域的语义资源的不同类型链路分析方法的适用性最广泛的系统研究之一。
translated by 谷歌翻译
全球DataSphere快速增加,预计将达到20251年的175个Zettabytes。但是,大多数内容都是非结构化的,并且无法通过机器可以理解。将此数据构建到知识图中,使得智能应用程序具有诸如深度问题的智能应用,推荐系统,语义搜索等。知识图是一种新兴技术,允许使用内容与上下文一起逻辑推理和揭示新的洞察。因此,它提供了必要的语法和推理语义,使得能够解决复杂的医疗保健,安全,金融机构,经济学和业务问题。作为一项结果,企业正在努力建设和维护知识图表,以支持各种下游应用。手动方法太贵了。自动化方案可以降低建设知识图的成本,高达15-250次。本文批评了最先进的自动化技术,以自主地生成近乎人类的近乎人类的质量。此外,它突出了需要解决的不同研究问题,以提供高质量的知识图表
translated by 谷歌翻译
知识图(KGS)代表作为三元组的事实已被广泛采用在许多应用中。 LIGHT预测和规则感应等推理任务对于KG的开发很重要。已经提出了知识图形嵌入式(KGES)将kg的实体和kg与持续向量空间的关系进行了建议,以获得这些推理任务,并被证明是有效和强大的。但在实际应用中申请和部署KGE的合理性和可行性尚未探索。在本文中,我们讨论并报告我们在真实域应用程序中部署KGE的经验:电子商务。我们首先为电子商务KG系统提供三个重要的探索者:1)注意推理,推理几个目标关系更为关注而不是全部; 2)解释,提供预测的解释,帮助用户和业务运营商理解为什么预测; 3)可转让规则,生成可重用的规则,以加速将千克部署到新系统。虽然非现有KGE可以满足所有这些DesiderATA,但我们提出了一种新颖的一种,可说明的知识图表注意网络,通过建模三元组之间的相关性而不是纯粹依赖于其头实体,关系和尾部实体嵌入来预测。它可以自动选择预测的注意力三倍,并同时记录它们的贡献,从该解释可以很容易地提供,可以有效地生产可转移规则。我们经验表明,我们的方法能够在我们的电子商务应用程序中满足所有三个DesiderATA,并从实际域应用程序中倾斜于数据集的典型基线。
translated by 谷歌翻译
Biomedical knowledge graphs (KG) are heterogenous networks consisting of biological entities as nodes and relations between them as edges. These entities and relations are extracted from millions of research papers and unified in a single resource. The goal of biomedical multi-hop question-answering over knowledge graph (KGQA) is to help biologist and scientist to get valuable insights by asking questions in natural language. Relevant answers can be found by first understanding the question and then querying the KG for right set of nodes and relationships to arrive at an answer. To model the question, language models such as RoBERTa and BioBERT are used to understand context from natural language question. One of the challenges in KGQA is missing links in the KG. Knowledge graph embeddings (KGE) help to overcome this problem by encoding nodes and edges in a dense and more efficient way. In this paper, we use a publicly available KG called Hetionet which is an integrative network of biomedical knowledge assembled from 29 different databases of genes, compounds, diseases, and more. We have enriched this KG dataset by creating a multi-hop biomedical question-answering dataset in natural language for testing the biomedical multi-hop question-answering system and this dataset will be made available to the research community. The major contribution of this research is an integrated system that combines language models with KG embeddings to give highly relevant answers to free-form questions asked by biologists in an intuitive interface. Biomedical multi-hop question-answering system is tested on this data and results are highly encouraging.
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
知识图完成(又称〜链接预测),即〜从知识图推断缺失信息的任务是许多应用程序中广泛使用的任务,例如产品建议和问题答案。知识图嵌入和/或规则挖掘和推理的最新方法是数据驱动的,因此仅基于输入知识图所包含的信息。这导致了不令人满意的预测结果,这使得这种解决方案不适用于关键领域,例如医疗保健。为了进一步提高知识图完成的准确性,我们建议将知识图嵌入的数据驱动的能力与专家或累积制度(例如OWL2)引起的域特定于域的推理。通过这种方式,我们不仅使用可能不包含在输入知识图中的域知识增强了预测准确性,而且还允许用户插入自己的知识图嵌入和推理方法。我们的最初结果表明,我们通过最多3倍和优于混合解决方案来增强香草知识图嵌入的MRR准确性,这些溶液将知识图嵌入与规则挖掘和推理高达3.5倍MRR相结合。
translated by 谷歌翻译
多跳跃逻辑推理是在知识图(KGS)上学习领域的一个已建立问题。它涵盖了单跳连接预测以及其他更复杂的逻辑查询类型。现有的算法仅在经典的三重基图上运行,而现代KG经常采用超相关的建模范式。在此范式中,键入的边缘可能具有几对键值对,称为限定符,可为事实提供细粒度的环境。在查询中,此上下文修改了关系的含义,通常会减少答案集。经常在现实世界中的应用程序中观察到超相关的查询,并且现有的近似查询答案方法无法使用预选赛对。在这项工作中,我们弥合了这一差距,并将多跳的推理问题扩展到了超级关系的KG,允许解决这一新类型的复杂查询。在图形神经网络和查询嵌入技术的最新进展之下,我们研究了如何嵌入和回答超相关的连词查询。除此之外,我们还提出了一种回答此类查询并在我们的实验中证明的方法,即预选赛可以改善对各种查询模式的查询回答。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译