因果关系的观察性研究需要调整混杂因素。在这些因素定义明确的单独随机变量的表格环境中,人们可以很好地理解混杂的效果。但是,在公共政策,生态学和医学中,决策通常是在非尾部环境中做出的,这些设置由图像中检测到的模式或对象(例如,地图,卫星或层析成像图像)所告知。使用此类图像进行因果推理会带来机会,因为图像中的对象可能与感兴趣的治疗和结果有关。在这些情况下,我们依靠图像来调整混淆,但观察到的数据并未直接标记重要对象的存在。在现实世界中的激励中,我们正式化了这一挑战,如何处理,以及哪些条件足以识别和估计因果关系。我们使用仿真实验分析有限样本的性能,并使用采用机器学习模型来估计图像混淆的倾向调整算法估算效果。我们的实验还检查了对图像模式机制错误指定的敏感性。最后,我们使用我们的方法来估计卫星图像中政策干预对非洲社区贫困的影响。
translated by 谷歌翻译
随机对照试验(RCT)被认为是估计干预措施影响的黄金标准。最近的工作通过对年龄和种族等表的变量进行调节估计来研究RCT的效应异质性。但是,这种变量通常只在实验时间附近观察到,并且可能无法捕获效果变异的历史或地理原因。当实验单元与特定位置相关联时,卫星图像可以提供此类历史和地理信息,但是没有任何方法将其包含在描述效果异质性。在本文中,我们开发了一种方法,该方法使用深层概率建模框架估算,图像簇在治疗效果上具有相同的分布。我们将提出的方法与模拟中的替代方法进行比较,并在估计乌干达的反贫困干预措施的影响方面进行了比较。引入了因果正规化惩罚,以确保聚类模型在恢复平均治疗效果(ATE)方面的可靠性。最后,我们讨论了这些方法对其他领域的可行性,局限性以及适用性,例如医学和气候科学,其中图像信息很普遍。我们为在开源软件包中公开使用的所有建模策略制作代码。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译
估计空间变化的干预对空间变化结果的因果影响可能会受到非本地混杂(NLC)的影响,这种现象可能会估计给定单位的处理和结果部分由协方差估计。附近的其他单元。特别是,NLC是评估环境政策和气候事件对健康相关结果(例如空气污染暴露)的影响的挑战。本文首先使用潜在结果框架对NLC进行正式化,从而与因果干扰的相关现象进行了比较。然后,它提出了一个称为“ weather2vec”的广泛适用框架,该框架使用平衡分数理论来学习非本地信息的表示形式,以定义为每个观察单元定义的标量或向量使用因果推理方法。该框架在一项仿真研究和两项关于空气污染的案例研究中进行了评估,天气是(本质上是区域)已知的混杂因素。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
translated by 谷歌翻译
在本文中,我们提出了一种非参数估计的方法,并推断了一般样本选择模型中因果效应参数的异质界限,初始治疗可能会影响干预后结果是否观察到。可观察到的协变量可能会混淆治疗选择,而观察结果和不可观察的结果可能会混淆。该方法提供条件效应界限作为策略相关的预处理变量的功能。它允许对身份不明的条件效应曲线进行有效的统计推断。我们使用灵活的半参数脱偏机学习方法,该方法可以适应柔性功能形式和治疗,选择和结果过程之间的高维混杂变量。还提供了易于验证的高级条件,以进行估计和错误指定的鲁棒推理保证。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
We propose a new method to estimate causal effects from nonexperimental data. Each pair of sample units is first associated with a stochastic 'treatment' - differences in factors between units - and an effect - a resultant outcome difference. It is then proposed that all such pairs can be combined to provide more accurate estimates of causal effects in observational data, provided a statistical model connecting combinatorial properties of treatments to the accuracy and unbiasedness of their effects. The article introduces one such model and a Bayesian approach to combine the $O(n^2)$ pairwise observations typically available in nonexperimnetal data. This also leads to an interpretation of nonexperimental datasets as incomplete, or noisy, versions of ideal factorial experimental designs. This approach to causal effect estimation has several advantages: (1) it expands the number of observations, converting thousands of individuals into millions of observational treatments; (2) starting with treatments closest to the experimental ideal, it identifies noncausal variables that can be ignored in the future, making estimation easier in each subsequent iteration while departing minimally from experiment-like conditions; (3) it recovers individual causal effects in heterogeneous populations. We evaluate the method in simulations and the National Supported Work (NSW) program, an intensively studied program whose effects are known from randomized field experiments. We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample with the entire national program data, outperforming Statistical, Econometrics and Machine Learning estimators in all cases...
translated by 谷歌翻译
负面对照是在存在未衡量混杂的情况下学习治疗与结果之间因果关系的策略。但是,如果有两个辅助变量可用:阴性对照治疗(对实际结果没有影响),并且可以确定治疗效果,并且可以识别出负面对照的结果(不受实际治疗的影响)。这些辅助变量也可以看作是一组传统控制变量的代理,并且与仪器变量相似。我提出了一种基于内核脊回归的算法系列,用于学习非参数治疗效果,并具有阴性对照。例子包括剂量反应曲线,具有分布转移的剂量反应曲线以及异质治疗效果。数据可能是离散的或连续的,并且低,高或无限的尺寸。我证明一致性均匀,并提供有限的收敛速率。我使用宾夕法尼亚州1989年至1991年之间在宾夕法尼亚州的单身人士出生的数据集对婴儿的出生体重进行了吸烟的剂量反应曲线,以调整未观察到的混杂因素。
translated by 谷歌翻译
Statistical risk assessments inform consequential decisions such as pretrial release in criminal justice, and loan approvals in consumer finance. Such risk assessments make counterfactual predictions, predicting the likelihood of an outcome under a proposed decision (e.g., what would happen if we approved this loan?). A central challenge, however, is that there may have been unmeasured confounders that jointly affected past decisions and outcomes in the historical data. This paper proposes a tractable mean outcome sensitivity model that bounds the extent to which unmeasured confounders could affect outcomes on average. The mean outcome sensitivity model partially identifies the conditional likelihood of the outcome under the proposed decision, popular predictive performance metrics (e.g., accuracy, calibration, TPR, FPR), and commonly-used predictive disparities. We derive their sharp identified sets, and we then solve three tasks that are essential to deploying statistical risk assessments in high-stakes settings. First, we propose a doubly-robust learning procedure for the bounds on the conditional likelihood of the outcome under the proposed decision. Second, we translate our estimated bounds on the conditional likelihood of the outcome under the proposed decision into a robust, plug-in decision-making policy. Third, we develop doubly-robust estimators of the bounds on the predictive performance of an existing risk assessment.
translated by 谷歌翻译
由于混杂偏见的复杂情况,使用观察数据估算治疗效果,尤其是个性化治疗效果(ITE),这是具有挑战性的。纵向观察数据估算治疗效果的现有方法通常是基于“不满意”的强烈假设,在现实世界实践中很难实现。在本文中,我们提出了变异的时间变形器(VTD),这种方法使用代理(即用于无法观察到的变量)来利用纵向设置中深层嵌入的方法。具体而言,VTD利用观察到的代理学习隐藏的嵌入,以反映观测数据中真正隐藏的混杂因素。因此,我们的VTD方法不依赖“不符”假设。我们在合成和实际临床数据上测试了VTD方法,结果表明,与其他现有模型相比,隐藏混杂性是主要偏见时我们的方法有效。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
科学研究的基本目标是了解因果关系。然而,尽管因果关系在生活和社会科学中的重要作用,但在自然语言处理(NLP)中并不具有相同的重要性,而自然语言处理(NLP)传统上更加重视预测任务。这种区别开始逐渐消失,随着因果推理和语言处理的融合,跨学科研究的新兴领域。尽管如此,关于NLP因果关系的研究仍然散布在没有统一的定义,基准数据集的情况下,并清楚地表达了将因果推论应用于文本领域的挑战和机遇,并具有其独特的属性。在这项调查中,我们巩固了整个学术领域的研究,并将其置于更广泛的NLP景观中。我们介绍了用文本估算因果效应的统计挑战,其中包含文本用作结果,治疗或解决混杂问题的设置。此外,我们探讨了因果推理的潜在用途,以提高NLP模型的鲁棒性,公平性和解释性。因此,我们提供了NLP社区因果推断的统一概述。
translated by 谷歌翻译