Recent cross-lingual cross-modal works attempt to extend Vision-Language Pre-training (VLP) models to non-English inputs and achieve impressive performance. However, these models focus only on understanding tasks utilizing encoder-only architecture. In this paper, we propose ERNIE-UniX2, a unified cross-lingual cross-modal pre-training framework for both generation and understanding tasks. ERNIE-UniX2 integrates multiple pre-training paradigms (e.g., contrastive learning and language modeling) based on encoder-decoder architecture and attempts to learn a better joint representation across languages and modalities. Furthermore, ERNIE-UniX2 can be seamlessly fine-tuned for varieties of generation and understanding downstream tasks. Pre-trained on both multilingual text-only and image-text datasets, ERNIE-UniX2 achieves SOTA results on various cross-lingual cross-modal generation and understanding tasks such as multimodal machine translation and multilingual visual question answering.
translated by 谷歌翻译
大规模数据集上的视觉语言预训练(VLP)在各种下游任务上表现出了首要性能。对于VLP来说,完整且公平的基准(即包括大规模的预训练数据集和各种下游任务)是必不可少的。尽管有很多具有英语语料库的基准,但使用其他语言(例如中文)为VLP建立丰富的基准是一个关键问题。为此,我们为研究界建立了一个称为零的中国跨模式基准,以比较VLP模型。我们发布两个用于下游任务的预训练数据集和五个微调数据集。旁边,我们提出了一个新的预训练前训练框架,用于跨模式学习。具体而言,我们应用全局对比度预级分别学习图像和文本的各个表示。然后,我们通过图像文本交叉编码器和文本图像交叉编码器以细粒度的排名方式融合表示形式。为了进一步增强模型的能力,我们提出了一种由目标引导的蒸馏和特征引导的蒸馏组成的双向蒸馏策略。对于简洁起见,我们将型号r2d2命名。我们在四个公共跨模式数据集和拟议的五个下游数据集上实现最先进的性能。在Flickr30k-CN,可可-CN和Muge进行零射击任务时,与最平均召回的R2D2进行了2.5亿个数据集的R2D2,在2.5亿个数据集中进行了4.7%,5.4%和6.3%的均值改善,而与最新的召回相比艺术。数据集,模型和代码可在https://github.com/yuxie11/r2d2上找到
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译
视觉语言预训练(VLP)模型在各种下游任务上表现出色。他们的成功在很大程度上取决于预训练的跨模式数据集的规模。但是,中文中缺乏大规模数据集和基准阻碍了中国VLP模型和更广泛的多语言应用程序的发展。在这项工作中,我们发布了一个名为Wukong的大型中国跨模式数据集,其中包含从网络收集的1亿个中文图像文本对。 Wukong旨在基准基准不同的多模式预训练方法,以促进VLP研究和社区发展。此外,我们发布了一组模型,预先训练了各种图像编码器(vit-b/vit-l/swint),还将高级预训练技术应用于VLP,例如锁定图像文本调整,相对于代币的相似性学习和减少互动。还提供了广泛的实验和不同下游任务的基准测试,包括新的最大人验证的图像文本测试数据集。实验表明,Wukong可以作为不同的跨模式学习方法的有前途的中国预培训数据集和基准。对于10个数据集上的零摄像图像分类任务,$ Wukong_ {vit-l} $达到的平均准确度为73.03%。对于图像文本检索任务,它在AIC-ICC上的平均召回率为71.6%,比Wenlan 2.0高12.9%。此外,我们的Wukong模型在下游任务上进行了基准测试,例如多个数据集上的其他变体,例如Flickr8k-CN,Flickr-30K-CN,Coco-CN,Coco-CN等。更多信息可以参考:https://wukong-dataset.github.io/wukong-dataset/。
translated by 谷歌翻译
随着变压器的发展,近年来预先训练的模型已经以突破性的步伐发展。他们在自然语言处理(NLP)和计算机视觉(CV)中主导了主流技术。如何将预训练适应视觉和语言(V-L)学习和改善下游任务绩效成为多模式学习的重点。在本文中,我们回顾了视力语言预训练模型(VL-PTMS)的最新进展。作为核心内容,我们首先简要介绍了几种方法,将原始图像和文本编码为单模式嵌入在预训练之前。然后,我们在建模文本和图像表示之间的相互作用时深入研究VL-PTM的主流体系结构。我们进一步提出了广泛使用的预训练任务,然后我们介绍了一些常见的下游任务。我们终于结束了本文,并提出了一些有前途的研究方向。我们的调查旨在为研究人员提供合成和指向相关研究的指针。
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译
随着视觉前训练的成功,我们目睹了最先进的方式,以多模式的理解和产生推动。但是,当前的预训练范式不能一次靶向所有模式(例如,文本生成和图像生成),或者需要多重设计良好的任务,从而显着限制可伸缩性。我们证明,可以通过文本和图像序列的前缀语言建模目标学习统一的模态模型。得益于简单但功能强大的预训练范式,我们提出的模型Davinci非常易于训练,可扩展到巨大的数据,并且可以适应跨模态(语言 /视觉 /视觉+语言)的各种下游任务(类型)(理解) / generation)和设置(例如,零射,微调,线性评估)具有单个统一体系结构。达文奇(Davinci)在26个理解 /发电任务的广泛范围内实现了竞争性能,并且在大多数任务上都超过了以前的统一视力语言模型,包括Imagenet分类(+1.6%),VQAV2(+1.4%)(+1.4%),可可标题生成(Bleu@@@@@ 4 +1.1%,苹果酒 +1.5%)和可可图像生成( +0.9%,FID -1.0%),在可比的模型和数据量表处。此外,我们通过在异质和广泛的分布覆盖范围内报告不同尺度的量表上的性能,为将来的研究提供了明确的基准。我们的结果建立了新的,更强的基线,以便将来在不同的数据量表上进行比较,并阐明了更广泛地比较VLP模型的困难。
translated by 谷歌翻译
在本文中,我们提出了一种单一统一的变压器(UFO),其能够处理视觉语言的单峰输入(例如,图像或语言)或多模式输入(例如,图像和问题的串联)( VL)表示学习。现有方法通常为每个模态和/或特定融合网络设计个人网络,用于多模式任务。为了简化网络架构,我们使用单个变压器网络并在VL预培训期间强制执行多任务学习,其包括图像文本对比丢失,图像文本匹配丢失和基于双向的屏蔽语言建模损耗SEQ2Seq注意面具。相同的变压器网络用作不同预训练任务中的图像编码器,文本编码器或融合网络。经验上,我们观察不同任务之间的冲突,并在视觉问题应答,Coco图像标题(交叉熵优化)和Nocaps(在香料中)实现新的艺术状态。在其他下游任务中,例如,图像文本检索,我们也实现了竞争性能。
translated by 谷歌翻译
语言,视觉和多模式预审查的大量融合正在出现。在这项工作中,我们介绍了通用多模式基础模型BEIT-3,该模型BEIT-3,该模型在视觉和视觉任务上都实现了最新的转移性能。具体来说,我们从三个方面提出了大融合:骨干架构,预训练任务和模型扩展。我们介绍了多道路变压器进行通用建模,其中模块化体系结构可以实现深融合和模态特定的编码。基于共享的骨干,我们以统一的方式对图像(Imglish),文本(英语)和图像文本对(“平行句子”)进行蒙面的“语言”建模。实验结果表明,BEIT-3在对象检测(COCO),语义分割(ADE20K),图像分类(Imagenet),视觉推理(NLVR2),视觉询问答案(VQAV2),图像字幕上获得最先进的性能(可可)和跨模式检索(Flickr30k,可可)。
translated by 谷歌翻译
Large-scale cross-modal pre-training paradigms have recently shown ubiquitous success on a wide range of downstream tasks, e.g., zero-shot classification, retrieval and image captioning. However, their successes highly rely on the scale and quality of web-crawled data that naturally contain incomplete and noisy information (e.g., wrong or irrelevant content). Existing works either design manual rules to clean data or generate pseudo-targets as auxiliary signals for reducing noise impact, which do not explicitly tackle both the incorrect and incomplete challenges simultaneously. In this paper, to automatically mitigate the impact of noise by solely mining over existing data, we propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion. First, in noise-harmonization scheme, NLIP estimates the noise probability of each pair according to the memorization effect of cross-modal transformers, then adopts noise-adaptive regularization to harmonize the cross-modal alignments with varying degrees. Second, in noise-completion scheme, to enrich the missing object information of text, NLIP injects a concept-conditioned cross-modal decoder to obtain semantic-consistent synthetic captions to complete noisy ones, which uses the retrieved visual concepts (i.e., objects' names) for the corresponding image to guide captioning generation. By collaboratively optimizing noise-harmonization and noise-completion schemes, our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way. Extensive experiments show the significant performance improvements of our NLIP using only 26M data over existing pre-trained models (e.g., CLIP, FILIP and BLIP) on 12 zero-shot classification datasets, MSCOCO image captioning and zero-shot image-text retrieval tasks.
translated by 谷歌翻译
用于图像文本生成任务的传统方法主要是分别解决自然双向生成任务,专注于设计任务特定的框架以提高所生成的样本的质量和保真度。最近,Vision-Language预训练模型大大提高了图像到文本生成任务的性能,但仍未开发出用于文本到图像综合任务的大规模预训练模型。在本文中,我们提出了一个具有变压器模型的双向图像文本生成的统一生成的预训练框架的Ernie-Vi​​lg。基于图像量化模型,我们将图像生成和文本生成标准为在文本/图像输入上调节的自回归生成任务。双向图像文本生成建模简化了视觉和语言的语义对齐。对于文本到图像生成过程,我们进一步提出了端到端的训练方法,共同学习视觉序列发生器和图像重建。为了探讨双向文本图像生成的大规模预培训景观,我们在大规模数据集中培训了100亿参数的Ernie-Vi​​lg模型,以145百万(中文)图像 - 文本对实现了达到的状态 - 文本到图像和图像到文本任务的最佳性能,以便在MS-Coco上获取7.9的FID,用于文本到图像合成以及用于图像标题的Coco-CN和AIC-ICC的最佳结果。
translated by 谷歌翻译
Vision-and语言(VL)预培训已被证明对各种VL下游任务非常有效。虽然最近的工作表明,基于完全变换器的VL模型可以比以前的基于区域特征的方法更有效,但它们在下游任务上的性能通常显着降低。在本文中,我们呈现仪表〜(\ textbf {m} ultimodal \ textbf {e} nd-to-text \ textbf {t} ransform \ textbf {er}),我们通过它系统地调查如何设计和预先列车基于完全变换器的VL模型以端到端的方式。具体而言,我们将模型设计沿多个尺寸分析:视觉编码器(例如,剪辑 - vit,Swin变压器),文本编码器(例如,Roberta,Deberta),多模式融合(例如,合并注意力与共同关注),架构设计(例如,仅编码器与编码器 - 解码器)和预训练目标(例如,屏蔽图像建模)。我们对广泛的VL任务进行全面实验,并提供有关如何在保持快速推理速度的同时培训表演VL变压器的见解。值得注意的是,仪表〜使用仅使用4M图像进行预培训的VQAV2 TEST-STD设置的精度为77.64 \%,超过最先进的区域特征的VINVL模型+1.04 \%,以及优于以前最好的完全变换器的ALBEF模型+1.6 \%。
translated by 谷歌翻译
我们介绍了一个名为VL-BEIT的视觉基础模型,这是一种双向多模式变压器,通过生成预处理学习。我们的极简主义解决方案通过共享变压器对单接和多模式数据进行掩盖的预测。具体而言,我们对图像文本对,文本上的掩盖语言建模以及图像上的掩盖图像建模进行了掩盖视觉模型。VL-从头开始学习,其中一项统一的预处理任务,一个共用的骨干和一阶段的训练。我们的方法在概念上是简单的,并且在经验上有效。实验结果表明,VL-BEIT在各种视觉语言基准(例如视觉问题回答,视觉推理和图像文本检索)上获得了强大的结果。此外,我们的方法学习可转移的视觉特征,在图像分类方面实现竞争性能以及语义分割。
translated by 谷歌翻译
尽管最近在跨模式检索领域取得了进展,但由于缺乏手动注释的数据集,研究的重点较少。在本文中,我们提出了一种用于低资源语言的噪声跨语法跨模式检索方法。为此,我们使用机器翻译(MT)来构建低资源语言的伪并行句子对。但是,由于MT并不完美,因此它倾向于在翻译过程中引入噪音,从而使文本嵌入被损坏,从而损害了检索性能。为了减轻这一点,我们引入了一种多视图自我验证方法来学习噪声稳定目标语言表示,该方法采用了跨注意模块来生成软伪靶标,以从基于相似性的视图和功能 - 功能 - 基于视图。此外,受到无监督的MT的反向翻译的启发,我们最大程度地减少了原点句子和反翻译句子之间的语义差异,以进一步提高文本编码器的噪声稳健性。在三个视频文本和图像文本跨模式检索基准跨不同语言上进行了广泛的实验,结果表明,我们的方法显着改善了整体性能,而无需使用额外的人体标记数据。此外,从最近的视觉和语言预训练框架(即剪辑)中配备了预训练的视觉编码器,我们的模型可实现显着的性能增长,这表明我们的方法与流行的预训练模型兼容。代码和数据可在https://github.com/huiguanlab/nrccr上找到。
translated by 谷歌翻译
我们介绍了一个统一的视觉 - 语言普试模型(VLMO),共同学习双编码器和带有模块化变压器网络的融合编码器。具体而言,我们介绍了模态 - 专家(Mome)变压器的混合,其中每个块包含一个模态特定专家和共同的自我注意层。由于Mome的柔性柔韧性,预先调整的VLMO可以精细调整为viSion语言分类任务的融合编码器,或用作双编码器,用于有效的图像文本检索。此外,我们提出了一个航向的预训练策略,它有效地利用了除了图像文本对之外的大规模图像和仅文本数据。实验结果表明,VLMO在各种视觉语言任务上实现了最先进的结果,包括VQA和NLVR2。代码和预用模型可以在https://aka.ms/vlmo获得。
translated by 谷歌翻译
可靠的评估基准是为了可复制性和全面性而设计的,在机器学习方面取得了进步。但是,由于缺乏多语言基准,视觉和语言研究主要集中在英语任务上。为了填补这一空白,我们介绍了图像的语言理解评估基准。 Iglue通过汇总已有的数据集并创建新的数据来汇集 - 视觉问题回答,跨模式检索,扎根的推理以及跨20种不同语言的扎根成本。我们的基准测试能够评估多语言多模型用于转移学习的模型,不仅在零弹位设置中,而且还以新定义的少数图学习设置。根据对可用最新模型的评估,我们发现翻译测试转移优于零弹性转移,并且对于许多任务而言,很难利用射击的学习。此外,下游性能部分用可用的未标记文本数据进行预处理来解释,并且仅通过目标源语言的类型学距离而微弱。我们希望通过向社区释放基准来鼓励该领域的未来研究工作。
translated by 谷歌翻译
图像和语言建模对于视觉前训练(VLP)至关重要,该培训旨在从大规模配对的图像文本数据中学习多模式表示。但是,我们观察到,大多数现有的VLP方法着重于建模图像和文本特征之间的相互作用,同时忽略图像和文本之间的信息差异,从而遭受焦点偏见。为了解决这个问题,我们提出了一个视觉语言掩盖自动编码器框架(VLMAE)。VLMAE采用视觉生成学习,促进该模型获得细粒度和公正的特征。与以前的作品不同,Vlmae注意图像中几乎所有关键的补丁,提供了更全面的理解。广泛的实验表明,VLMAE在各种视觉语言下游任务中取得更好的性能,包括视觉问答,即使有20%的预训练速度,图像文本检索和视觉接地也是如此。
translated by 谷歌翻译
我们提出了一种跨模型关注蒸馏框架,用于培训双编码器模型,用于了解视觉语言理解任务,例如视觉推理和视觉问题应答。双编码器模型的推理速度比Fusion-encoder模型更快,并在推理期间启用图像和文本的预算。然而,双编码器模型中使用的浅交互模块不足以处理复杂的视觉语言理解任务。为了学习图像和文本的深度互动,我们引入了跨模型注意蒸馏,它使用融合编码器模型的图像到文本和文本到图像注意力分布来指导我们的双编码器的培训模型。此外,我们表明,适用于预训练和微调阶段的跨模型注意蒸馏实现了进一步的改进。实验结果表明,蒸馏的双编码器模型可实现视觉推理,视觉征求和视觉问题的竞争性能,同时享受比Fusion-Conoder模型更快的推理速度。我们的代码和型号将在https://github.com/kugwzk/distilled -dualiCoder上公开提供。
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
大多数现有的视觉语言预训练方法侧重于在预先绘制期间了解解决任务并使用伯特样目标(屏蔽语言建模和图像 - 文本匹配)。虽然它们在许多理解下游任务中表现良好,但是,例如,视觉问题应答,图像文本检索和视觉存在,它们没有生成的能力。为了解决这个问题,我们为视觉语言理解和一代(UNIVL)提出了统一的多模式预培训。建议的UNIVL能够处理理解任务和生成任务。我们增强了现有的预押范例,只使用带有因果面罩的随机掩模,即掩盖未来令牌的三角面具,使得预先接受的模型可以通过设计具有自动发育能力。我们将几个以前的理解任务作为文本生成任务制定,并建议使用基于提示的方法来进行不同的下游任务进行微调。我们的实验表明,在使用相同型号的同时了解任务和生成任务之间存在权衡,以及改善两个任务的可行方式是使用更多数据。我们的UNIVL框架可以在近似验证任务和生成任务中获得最近的愿景预培训方法的性能。此外,我们开展了基于及时的FineTuning更具数据效率 - 在几次拍摄场景中表现出差异的方法。
translated by 谷歌翻译