我们调查部分观察到的Markov决策过程(POMDPS),通过描述状态,观察和控制不确定性的熵术语规范化的成本函数。标准POMDP技术显示为对这些熵正则化的POMDP提供有界误差解决方案,当正规化涉及状态,观察和控制轨迹的联合熵时,具有精确的解决方案。我们的联合熵结果特别令人惊讶,因为它构成了一种新颖的,无解决的活性状态估计的制剂。
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
在部分观察到的马尔可夫决策过程(POMDPS)的理论中,通过将原始部分观察到的随机控制问题转换为在信仰空间的完全观察到的人,导致信仰MDP的完全观察到的最佳政策存在。然而,计算出于这个完全观察到的模型的最佳策略,以及原始POMDP,即使原始系统具有有限状态和动作空间,也可以使用经典动态或线性编程方法具有挑战性,自完全观察到的信仰的状态空间 - MDP模型始终是不可数的。此外,存在非常少数严格的价值函数近似和最佳的政策近似结果,因为所需的规则条件通常需要繁琐的研究,涉及导致诸如FELLER连续性等性质的概率措施的空间。在本文中,我们研究了假设系统动态和测量信道模型的POMDP的规划问题。我们通过仅使用有限窗口信息变量对信仰空间离散地来构造近似信仰模型。然后,我们为近似模型找到最佳策略,我们严格地在温和的非线性滤波器稳定条件下严格地在POMDPS中的构建有限窗口控制策略的最优性以及测量和动作集是有限的假设(并且状态空间是真实的矢量估值)。我们还建立了收敛结果的速度,这与有限窗口存储器大小和近似误差绑定,其中收敛速率是在显式和可测试的指数滤波器稳定条件下的指数。虽然存在许多实验结果和很少严格的渐近收敛结果,但在文献中,文献中的新的收敛率是新的,达到我们的知识。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
先前关于安全加强学习的工作(RL)研究了对动态(aleatory)随机性的风险规避,并隔离地模拟了不确定性(认知)。我们提出并分析一个新框架,以共同对有限马和折现的无限马MDP中的认知和差异不确定性相关的风险进行建模。我们称此框架结合了规避风险和软性的方法RASR。我们表明,当使用EVAR或熵风险定义风险规定时,可以使用具有时间依赖性风险水平的新的动态程序公式有效地计算RASR中的最佳策略。结果,即使是在无限 - 亨特折扣环境中,最佳的规避风险政策也是确定性但依赖时间的。我们还表明,具有平均后验过渡概率的特定RASR目标减少到规避风险的RL。我们的经验结果表明,我们的新算法始终减轻EVAR和其他标准风险措施衡量的不确定性。
translated by 谷歌翻译
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP. Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of $\mathcal{O}(C)$, where $C$ is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
增强学习算法通常需要马尔可夫决策过程(MDP)中的状态和行动空间的有限度,并且在文献中已经对连续状态和动作空间的这种算法的适用性进行了各种努力。在本文中,我们表明,在非常温和的规律条件下(特别是仅涉及MDP的转换内核的弱连续性),通过量化状态和动作会聚到限制,Q-Learning用于标准BOREL MDP,而且此外限制满足最优性方程,其导致与明确的性能界限接近最优性,或者保证渐近最佳。我们的方法在(i)上建立了(i)将量化视为测量内核,因此将量化的MDP作为POMDP,(ii)利用Q-Learning的Q-Learning的近的最优性和收敛结果,并最终是有限状态的近最优态模型近似用于MDP的弱连续内核,我们展示对应于构造POMDP的固定点。因此,我们的论文提出了一种非常一般的收敛性和近似值,了解Q-Learning用于连续MDP的适用性。
translated by 谷歌翻译
我们研究了基于模型的未识别的强化学习,用于部分可观察到的马尔可夫决策过程(POMDPS)。我们认为的Oracle是POMDP的最佳政策,其在无限视野的平均奖励方面具有已知环境。我们为此问题提出了一种学习算法,基于隐藏的马尔可夫模型的光谱方法估计,POMDPS中的信念错误控制以及在线学习的上等信心结合方法。我们为提出的学习算法建立了$ o(t^{2/3} \ sqrt {\ log t})$的后悔界限,其中$ t $是学习范围。据我们所知,这是第一种算法,这是对我们学习普通POMDP的甲骨文的统一性后悔。
translated by 谷歌翻译
逆钢筋学习尝试在马尔可夫决策问题中重建奖励功能,使用代理操作的观察。正如Russell [1998]在Russell [1998]的那样,问题均为不良,即使在存在有关最佳行为的完美信息的情况下,奖励功能也无法识别。我们为熵正则化的问题提供了解决这种不可识别性的分辨率。对于给定的环境,我们完全表征了导致给定政策的奖励函数,并证明,在两个不同的折扣因子下或在足够的不同环境下给出了相同奖励的行动的示范,可以恢复不可观察的奖励。我们还向有限视野进行时间均匀奖励的一般性和充分条件,以及行动无关的奖励,概括Kim等人的最新结果。[2021]和Fu等人。[2018]。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
我们研究了由测量和过程噪声引起的不确定性的动态系统的规划问题。测量噪声导致系统状态可观察性有限,并且过程噪声在给定控制的结果中导致不确定性。问题是找到一个控制器,保证系统在有限时间内达到所需的目标状态,同时避免障碍物,至少需要一些所需的概率。由于噪音,此问题不承认一般的精确算法或闭合性解决方案。我们的主要贡献是一种新颖的规划方案,采用卡尔曼滤波作为状态估计器,以获得动态系统的有限状态抽象,我们将作为马尔可夫决策过程(MDP)正式化。通过延长概率间隔的MDP,我们可以增强模型对近似过渡概率的数值不精确的鲁棒性。对于这种所谓的间隔MDP(IMDP),我们采用最先进的验证技术来有效地计算最大化目标状态概率的计划。我们展示了抽象的正确性,并提供了几种优化,旨在平衡计划的质量和方法的可扩展性。我们展示我们的方法能够处理具有6维状态的系统,该系统导致具有数万个状态和数百万个过渡的IMDP。
translated by 谷歌翻译
我们研究了在不确定的环境中运行的机器人面临的计划问题,对状态不完整,嘈杂和/或不精确的行动。本文确定了一个新的问题子类,该阶级模拟了设置信息,在该设置中,只有通过某些外源过程,该过程会间歇性地揭示信息,该过程定期提供状态信息。几个实用领域符合该模型,包括激发我们研究的特定情况:远程成像增强行星探索的自主导航。为了注视着有效的专业解决方案方法,我们检查了该子类实例的结构。它们导致马尔可夫的决策过程具有指数较大的动作空间,但由于这些动作包括更多原子元素的序列,因此可以通过比较不同信息假设下的策略来建立绩效界限。这提供了一种系统地构建性能界限的方法。这样的界限很有用,因为与它们赋予的见解结合在一起,它们可以采用基于边界的方法来有效地获得高质量的解决方案。我们提出的经验结果证明了它们对所考虑的问题的有效性。上述内容还提到了时间时间为这些问题所扮演的独特作用 - 更具体地说:直到信息揭示的时间 - 我们在这方面发现并讨论了几个有趣的微妙之处。
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
在许多实际设置中,控制决策必须在有关相关状态变量的演变的部分/不完全信息下进行。部分观察到的马尔可夫决策过程(POMDPS)是一种相对良好的建模和分析这些问题的框架。在本文中,我们考虑了基于该过程可观察历史的POMDP模型的结构估计。我们用随机奖励分析POMDP模型的结构特性,并指定识别模型的条件,而不知道状态动态。我们考虑一种软策梯度算法来计算最大似然估计器,并提供收敛到静止点的有限时间表征。我们用应用于最佳设备更换的应用说明了估计方法。在这方面,必须在真实状态的部分/不完全信息下进行更换决策(即设备的条件)。我们使用合成和实数据来突出所提出的方法的鲁棒性,并在忽略部分状态可观察性时,表征误操作的可能性。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
我们考虑解决强大的马尔可夫决策过程(MDP)的问题,该过程涉及一组折扣,有限状态,有限的动作空间MDP,具有不确定的过渡核。计划的目的是找到一项强大的政策,以优化针对过渡不确定性的最坏情况值,从而将标准MDP计划作为特殊情况。对于$(\ Mathbf {s},\ Mathbf {a})$ - 矩形不确定性集,我们开发了一种基于策略的一阶方法,即稳健的策略镜像下降(RPMD),并建立$ \ Mathcal {o }(\ log(1/\ epsilon))$和$ \ Mathcal {o}(1/\ epsilon)$迭代复杂性,用于查找$ \ epsilon $ -optimal策略,并带有两个增加的步骤式方案。 RPMD的先前收敛适用于任何Bregman差异,前提是政策空间在以初始政策为中心时通过差异测量的半径限制了半径。此外,当布雷格曼的分歧对应于平方的欧几里得距离时,我们建立了一个$ \ mathcal {o}(\ max \ {1/\ epsilon,1/(\ eta \ eTa \ epsilon^2)\ epsilon^2)\任何常量的步进$ \ eta $。对于Bregman差异的一般类别,如果不确定性集满足相对强的凸度,则还为RPMD建立了类似的复杂性。当仅通过与名义环境的在线互动获得一阶信息时,我们进一步开发了一个名为SRPMD的随机变体。对于Bregman General Divergences,我们建立了一个$ \ MATHCAL {O}(1/\ Epsilon^2)$和$ \ Mathcal {O}(1/\ Epsilon^3)$样品复杂性,具有两个增加的静态方案。对于Euclidean Bregman Divergence,我们建立了一个$ \ MATHCAL {O}(1/\ Epsilon^3)$样本复杂性,并具有恒定的步骤。据我们所知,所有上述结果似乎是应用于强大的MDP问题的基于策略的一阶方法的新事物。
translated by 谷歌翻译
我们开发了一种利用无模型增强学习(RL)解决时间一致风险敏感随机优化问题的方法。具体地,我们假设代理商使用动态凸面风险措施评估一系列随机变量的风险。我们采用时间一致的动态编程原则来确定特定策略的值,并开发策略渐变更新规则。我们进一步开发了一个使用神经网络的演员批评风格算法,以优化策略。最后,我们通过将其应用于统计套利交易和障碍避免机器人控制中的优化问题来证明我们的方法的性能和灵活性。
translated by 谷歌翻译