Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
脑肿瘤细分对于胶质瘤患者的诊断和预后至关重要。脑肿瘤分割挑战赛继续提供一种开发自动算法来执行任务的伟大数据来源。本文介绍了我们对2021年竞争的贡献。我们开发了基于NN-UNET的方法,去年竞争的胜利。我们尝试了多种修改,包括使用较大的网络,用组标准化替换批量归一化,并在解码器中使用轴向注意力。内部5倍交叉验证以及组织者的在线评估显示了我们的方法的有效性,与基线相比,定量度量的微小改善。拟议的型号在最终排名上赢得了未经证明的测试数据的第一名。获奖提交的代码,备用重量和Docker图像在https://github.com/rixez/brats21_kaist_mri_lab上公开可用
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
来自磁共振成像(MRI)数据的自动脑肿瘤分割在评估治疗和个性化治疗分层的肿瘤反应中起重要作用.Manual分割是乏味的,主观的脑肿瘤细分算法有可能提供目标并且快速肿瘤分割。但是,这种算法的培训需要大量数据集,这些数据集并不总是可用的。数据增强技术可以减少对大型数据集的需求。然而,当前方法主要是参数,并且可能导致次优的性能。我们引入了两个非参数化的脑肿瘤分割的数据增强方法:混合结构正则化(MSR)和Shuffle像素噪声(SPN).we评估了MSR和SPN增强对大脑肿瘤分割(BRATS)2018挑战数据集的附加值与编码器 - 解码器NNU-NNU-NNU-NET架构作为分割算法。从MSR和SPN改善NNU-NET分段与参数高斯噪声增强相比的准确性。当分别将MSR与肿瘤核心和全肿瘤实验的非参数增强分别增加了80%至82%和p值= 0.0022,00028。所提出的MSR和SPN增强有可能在其他任务中提高神经网络性能。
translated by 谷歌翻译
State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired.
translated by 谷歌翻译
来自多个磁共振成像(MRI)方式的脑肿瘤分割是医学图像计算中的具有挑战性的任务。主要挑战在于各种扫描仪和成像协议的普遍性。在本文中,我们探讨了在不增加推理时间的情况下增加模型稳健性的策略。为此目的,我们探索使用不同损失,优化仪和培训验证数据拆分培训的型号的强大合奏。重要的是,我们探讨了U-Net架构的瓶颈中的变压器。虽然我们在瓶颈中发现变压器比平均基线U-Net更差,但是广义的Wasserstein骰子损失一致地产生优异的结果。此外,我们采用了高效的测试时间增强策略,以实现更快和强大的推论。我们的最终集合具有测试时间增强的七个3D U-Nets的平均骰子得分为89.4%,平均HAUSDORFF 95%距离10.0 mm在Brats 2021测试数据集时。我们的代码和培训的型号在https://github.com/lucasfidon/trabit_brats2021上公开提供。
translated by 谷歌翻译
Brain tumor imaging has been part of the clinical routine for many years to perform non-invasive detection and grading of tumors. Tumor segmentation is a crucial step for managing primary brain tumors because it allows a volumetric analysis to have a longitudinal follow-up of tumor growth or shrinkage to monitor disease progression and therapy response. In addition, it facilitates further quantitative analysis such as radiomics. Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation. In this study, we investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation. Two commonly used CNN architectures (i.e. DeepMedic and U-Net) were used to evaluate the impact of the essential parameters such as learning rate, batch size, loss function, and optimizer. The performance of CNN models using different configurations was assessed with the BraTS 2018 dataset to determine the most performant model. Then, the generalization ability of the model was assessed using our in-house dataset. For all experiments, U-Net achieved a higher DSC compared to the DeepMedic. However, the difference was only statistically significant for whole tumor segmentation using FLAIR sequence data and tumor core segmentation using T1w sequence data. Adam and SGD both with the initial learning rate set to 0.001 provided the highest segmentation DSC when training the CNN model using U-Net and DeepMedic architectures, respectively. No significant difference was observed when using different normalization approaches. In terms of loss functions, a weighted combination of soft Dice and cross-entropy loss with the weighting term set to 0.5 resulted in an improved segmentation performance and training stability for both DeepMedic and U-Net models.
translated by 谷歌翻译
多模式脑肿瘤分割挑战(BRALS)2021的另一年提供了较大的数据集,以促进脑肿瘤分割方法的合作和研究,这对于疾病分析和治疗规划是必要的。 BRATS 2021的大型数据集大小和现代GPU的出现为学习基于深度学习的方法提供了更好的机会,以学习来自数据的肿瘤表示。在这项工作中,我们维护了一个基于编码器解码器的分段网络,但专注于网络培训过程的修改,从而最大限度地减少扰动下的冗余。鉴于培训的网络,我们进一步介绍了基于置信的组合技术,以进一步提高性能。我们评估了Brats 2021验证板上的方法,并分别为增强肿瘤核心,肿瘤核心和全肿瘤的0.8600,0.8868和0.9265平均骰子。我们的团队(NVAUTO)提交是在ET和TC分数方面的最高表演,并且在WT分数方面的十大表演团队内。
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
脑肿瘤的语义分割是一个基本的医学图像分析任务,涉及多个MRI成像方式,可以帮助临床医生诊断患者并先后研究恶性实体的进展。近年来,完全卷积神经网络(FCNNS)方法已成为3D医学图像分割的事实标准。受欢迎的“U形”网络架构在不同的2D和3D语义分割任务和各种成像方式上实现了最先进的性能基准。然而,由于FCNNS中的卷积层的核心大小有限,它们的建模远程信息的性能是次优的,这可能导致具有可变尺寸的肿瘤分割的缺陷。另一方面,变压器模型在捕获多个域中的这种远程信息,包括自然语言处理和计算机视觉中的卓越功能。灵感来自视觉变形金刚的成功及其变体,我们提出了一种新的分割模型,被称为往返博物馆变压器(Swin Unet)。具体地,3D脑肿瘤语义分割的任务被重新重整为序列预测问题的序列,其中多模态输入数据被投射到嵌入的1D序列并用作作为编码器的分层SWIN变压器的输入。 SWIN变压器编码器通过利用移位窗口来提取五个不同分辨率的特征,以通过跳过连接在每个分辨率下连接到每个分辨率的基于FCNN的解码器。我们参与了Brats 2021分割挑战,我们所提出的模型在验证阶段的最佳方法中排名。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
本文提出了基于对脑肿瘤细分任务的普遍学习培训方法。在这一概念中,3D分割网络从双互惠对抗性学习方法学习。为了增强分割预测的概括并使分割网络稳健,我们通过在原始患者数据上添加一些噪声来通过增加一些噪声来遵循虚拟的对抗训练方法。通过将其作为定量主观裁判的评论者纳入了批评,分割网络从与分段结果相关的不确定性信息学习。我们在RSNA-ASNR-MICCAI BRATS 2021数据集上培训和评估网络架构。我们在线验证数据集的表现如下:骰子相似度得分为81.38%,90.77%和85.39%; Hausdorff距离(95±95±95毫米)分别为增强肿瘤,全肿瘤和肿瘤核心的5.37毫米,8.56毫米。同样,我们的方法实现了84.55%,90.46%和85.30%的骰子相似度得分,以及最终测试数据集上的13.48 mm,6.32毫米和16.98mm的Hausdorff距离(95 \%)。总体而言,我们所提出的方法对每个肿瘤次区域的分割准确性产生更好的性能。我们的代码实现在https://github.com/himashi92/vizviva_brats_2021上公开使用
translated by 谷歌翻译
通过磁共振成像(MRI)评估肿瘤负担对于评估胶质母细胞瘤的治疗反应至关重要。由于疾病的高异质性和复杂性,该评估的性能很复杂,并且与高变异性相关。在这项工作中,我们解决了这个问题,并提出了一条深度学习管道,用于对胶质母细胞瘤患者进行全自动的端到端分析。我们的方法同时确定了肿瘤的子区域,包括第一步的肿瘤,周围肿瘤和手术腔,然后计算出遵循神经符号学(RANO)标准的当前响应评估的体积和双相测量。此外,我们引入了严格的手动注释过程,其随后是人类专家描绘肿瘤子区域的,并捕获其分割的信心,后来在训练深度学习模型时被使用。我们广泛的实验研究的结果超过了760次术前和504例从公共数据库获得的神经胶质瘤后患者(2021 - 2020年在19个地点获得)和临床治疗试验(47和69个地点,可用于公共数据库(在19个地点获得)(47和69个地点)术前/术后患者,2009-2011)并以彻底的定量,定性和统计分析进行了备份,表明我们的管道在手动描述时间的一部分中对术前和术后MRI进行了准确的分割(最高20比人更快。二维和体积测量与专家放射科医生非常吻合,我们表明RANO测量并不总是足以量化肿瘤负担。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
我们提出了一个联合图卷积图像卷积神经网络,作为我们对脑肿瘤分割(BRATS)2021挑战的提交。我们将每个大脑建模为由不同的图像区域组成的图,最初由图神经网络(GNN)分割。随后,由GNN鉴定的肿瘤体积通过简单(体素)卷积神经网络(CNN)进一步完善,该卷积神经网络(CNN)产生了最终的分割。这种方法通过图形表示捕获了全局大脑特征的交互,也可以通过使用卷积过滤器来捕获局部图像详细信息。我们发现,GNN成分本身可以有效地识别和分割脑肿瘤。在评估的所有指标中,CNN的添加进一步提高了该模型的中值性能。在验证集中,我们的联合GNN-CNN模型的平均骰子得分分别为0.89、0.81、0.73和平均Hausdorff距离(95%),分别为6.8、12.6、28.2mm,分别在整个肿瘤,核心肿瘤和增强肿瘤上。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
在医学图像分割任务中,脑肿瘤分割仍然是一个挑战。随着变压器在各种计算机视觉任务中的应用,变压器块显示了在全球空间中学习长距离依赖性的能力,这是与CNN互补的。在本文中,我们提出了一个新型的基于变压器的生成对抗网络,以自动分割具有多模式MRI的脑肿瘤。我们的架构由一个发电机和一个歧视器组成,这些发电机和歧视器接受了最小游戏进度的培训。发电机基于典型的“ U形”编码器架构,其底层由带有Resnet的变压器块组成。此外,发电机还接受了深度监督技术的培训。我们设计的鉴别器是一个基于CNN的网络,具有多尺度$ L_ {1} $损失,事实证明,这对于医学语义图像分割是有效的。为了验证我们方法的有效性,我们对BRATS2015数据集进行了实验,比以前的最新方法实现了可比或更好的性能。
translated by 谷歌翻译
卷积神经网络(CNNS)在3D医学图像上自动分割器官或病变取得了显着的成功。最近,视觉变压器网络在2D图像分类任务中表现出卓越的性能。与CNN相比,变压器网络由于其自我关注算法而提取远程特征的吸引力。因此,我们提出了一种称为Bitr-UNET的CNN变压器组合模型,对多模态MRI扫描进行脑肿瘤分割的具体修饰。我们的Bitr-UNET在BRATS2021验证数据集中实现了良好的性能,中值骰子得分0.9335,0.9304和0.8899,以及整个肿瘤,肿瘤核心和增强肿瘤的中位Hausdorff距离2.8284,2.2361和1.4142。在BRATS2021测试数据集上,骰子评分的相应结果为0.9257,0.9350和0.8874,对于Hausdorff距离为3,2.2361和1.4142。该代码在https://github.com/justatinydot/bitr-unet上公开使用。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译