直接语音到语音翻译(S2ST)模型与传统级联系统可用的数据量相比,几乎没有平行的S2ST数据遇到数据稀缺问题,该数据包括自动语音识别(ASR),机器翻译(MT)和文本到语音(TTS)合成。在这项工作中,我们使用未标记的语音数据和数据扩展来探索自我监督的预训练,以解决此问题。我们利用了最近提出的语音到单位翻译(S2UT)框架,该框架将目标语音编码为离散表示形式,并转移前训练前和有效的部分填充技术,可很好地适用于语音到文本翻译(S2T)通过研究语音编码器和离散单位解码器预训练,S2UT域。我们在西班牙语 - 英语翻译上进行的实验表明,与多任务学习相比,自我监督的预训练始终如一地提高模型性能,平均为6.6-12.1 BLEU增长,并且可以与数据增强技术相结合,以应用MT来创建弱监督监督的培训数据。音频样本可在以下网址获得:https://facebookresearch.github.io/speech_translation/enhanced_direct_s2st_units/index.html。
translated by 谷歌翻译
我们介绍了一种无线文字语音转换(S2ST)系统,可以将来自一种语言的语音转换为另一种语言,并且可以在不需要任何文本数据的情况下构建。与文献中的现有工作不同,我们解决了模拟多扬声器目标语音的挑战,并用现实世界的S2ST数据训练系统。我们方法的关键是一种自我监督的单位语音标准化技术,该标准化技术将预先训练的语音编码器具有来自多个扬声器的配对声音,以及单个参考扬声器,以减少由于复印件引起的变化,同时保留词汇内容。只有10分钟的语音标准化的配对数据,我们在培训\ vp〜s2st数据集上的S2ST模型时获得平均3.2 BLEU增益,而不是在未标准化的语音目标上培训的基线。我们还将自动开采的S2ST数据纳入并显示额外的2.0 BLEU增益。据我们所知,我们是第一个建立无线的S2ST技术,可以用真实世界的数据培训,并为多种语言配对工作。
translated by 谷歌翻译
Direct speech-to-speech translation (S2ST), in which all components can be optimized jointly, is advantageous over cascaded approaches to achieve fast inference with a simplified pipeline. We present a novel two-pass direct S2ST architecture, {\textit UnitY}, which first generates textual representations and predicts discrete acoustic units subsequently. We enhance the model performance by subword prediction in the first-pass decoder, advanced two-pass decoder architecture design and search strategy, and better training regularization. To leverage large amounts of unlabeled text data, we pre-train the first-pass text decoder based on the self-supervised denoising auto-encoding task. Experimental evaluations on benchmark datasets at various data scales demonstrate that UnitY outperforms a single-pass speech-to-unit translation model by 2.5-4.2 ASR-BLEU with 2.83x decoding speed-up. We show that the proposed methods boost the performance even when predicting spectrogram in the second pass. However, predicting discrete units achieves 2.51x decoding speed-up compared to that case.
translated by 谷歌翻译
端到端的语音到语音翻译(S2ST)而不依赖中间文本表示是一个快速新兴的研究领域。最近的作品表明,这种直接S2ST系统的性能正在接近常规级联S2ST时,在可比较的数据集中进行了培训。但是,实际上,直接S2ST的性能受到配对S2ST培训数据的可用性。在这项工作中,我们探索了多种方法,用于利用更广泛的无监督和弱监督的语音和文本数据,以改善基于Translatotron 2的直接S2ST的性能2.使用我们最有效的方法,我们的最有效的方法是21号直接S2ST的平均翻译质量与没有其他数据的先前最新的训练相比,CVSS-C语料库上的语言对改善了+13.6 BLEU(OR +113%)。低资源语言的改进更加显着(平均+398%)。我们的比较研究表明,S2ST和语音表示学习的未来研究方向。
translated by 谷歌翻译
We present SpeechMatrix, a large-scale multilingual corpus of speech-to-speech translations mined from real speech of European Parliament recordings. It contains speech alignments in 136 language pairs with a total of 418 thousand hours of speech. To evaluate the quality of this parallel speech, we train bilingual speech-to-speech translation models on mined data only and establish extensive baseline results on EuroParl-ST, VoxPopuli and FLEURS test sets. Enabled by the multilinguality of SpeechMatrix, we also explore multilingual speech-to-speech translation, a topic which was addressed by few other works. We also demonstrate that model pre-training and sparse scaling using Mixture-of-Experts bring large gains to translation performance. The mined data and models are freely available.
translated by 谷歌翻译
本文介绍了我们针对IWSLT 2022离线任务的端到端Yitrans语音翻译系统的提交,该任务从英语音频转换为德语,中文和日语。 Yitrans系统建立在大规模训练的编码器模型上。更具体地说,我们首先设计了多阶段的预训练策略,以建立具有大量标记和未标记数据的多模式模型。然后,我们为下游语音翻译任务微调模型的相应组件。此外,我们做出了各种努力,以提高性能,例如数据过滤,数据增强,语音细分,模型集合等。实验结果表明,我们的Yitrans系统比在三个翻译方向上的强基线取得了显着改进,并且比去年在TST2021英语 - 德国人中的最佳端到端系统方面的改进+5.2 BLEU改进。根据自动评估指标,我们的最终意见在英语 - 德国和英语端到端系统上排名第一。我们使代码和模型公开可用。
translated by 谷歌翻译
我们介绍了CVSS,这是一种大规模的多语言对语音转换(S2ST)语料库,从21种语言覆盖了21种语言的句子级并行S2ST对。通过将Covost 2从Covost 2的翻译文本综合将翻译文本与最先进的TTS系统合成语音,源自公共语音语音语料库和COVOST 2语音到文本转换(ST)语料库。提供了两个版本的翻译演讲:1)CVSS-C:所有翻译演讲都是一种高质量的规范声音; 2)CVSS-T:翻译语音从相应的源语音传输。此外,CVSS提供标准化的翻译文本,它与翻译语音中的发音匹配。在每个版本的CVSS上,我们建立了基线多语言直接S2ST模型和Cascade S2ST模型,验证了语料库的有效性。为了构建强大的Cascade S2ST基准,我们在Covost 2上培训了St模型,这优于前一种最先进的培训,而无需额外的数据。尽管如此,直接S2ST模型的性能在从头开始训练时接近强级联基线,并且在匹配ST模型中初始化时,仅在ASR转换转换时的0.1或0.7bleu差异。
translated by 谷歌翻译
我们提出了Maestro,这是一种自制的培训方法,可以统一从语音和文本方式中学到的表示形式。从语音信号中进行的自我监督学习旨在学习信号中固有的潜在结构,而从文本尝试捕获词汇信息的文本尝试中学习。从不配对的语音和文本序列中学习对齐表示是一项具有挑战性的任务。先前的工作要么隐含地强制执行从这两种方式中学到的表示形式,要通过多任务和参数共享在潜在空间中对齐,或通过语音综合通过模态转换而明确地进行。前者受到两种方式之间的干扰,而后者则引入了额外的复杂性。在本文中,我们提出了一种新颖的算法Maestro,旨在同时从这两种方式中学习统一的表示,可以转移到各种下游任务,例如自动语音识别(ASR)和语音翻译(ST)。 Maestro通过序列比对,持续时间预测和匹配的嵌入在学习空间中通过对齐的蒙版模型损失来学习统一的表示形式。我们在Voxpopuli多语言ASR上建立了一个新的最先进(SOTA),单词错误率相对相对降低8%(WER),多域Speetstew ASR(相对3.7%)和21种英语多语言ST在Covost 2上2.8 BLEU的改善平均21种语言。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
我们介绍了Fairseq S2T,这是语音到文本(S2T)建模任务的Fairseq扩展,例如端到端语音识别和语音到文本翻译。它遵循Fairseq的仔细设计,以实现可扩展性和可扩展性。我们提供从数据预处理,模型培训到离线推理的端到端工作流程。我们实施了基于最新的RNN,基于变压器以及基于构象的模型和开源详细培训配方。Fairseq的机器翻译模型和语言模型可以无缝集成到S2T工作流中,以进行多任务学习或转移学习。Fairseq S2T文档和示例可在https://github.com/pytorch/fairseq/tree/master/master/examples/speech_to_text上获得。
translated by 谷歌翻译
We present Mu$^{2}$SLAM, a multilingual sequence-to-sequence model pre-trained jointly on unlabeled speech, unlabeled text and supervised data spanning Automatic Speech Recognition (ASR), Automatic Speech Translation (AST) and Machine Translation (MT), in over 100 languages. By leveraging a quantized representation of speech as a target, Mu$^{2}$SLAM trains the speech-text models with a sequence-to-sequence masked denoising objective similar to T5 on the decoder and a masked language modeling (MLM) objective on the encoder, for both unlabeled speech and text, while utilizing the supervised tasks to improve cross-lingual and cross-modal representation alignment within the model. On CoVoST AST, Mu$^{2}$SLAM establishes a new state-of-the-art for models trained on public datasets, improving on xx-en translation over the previous best by 1.9 BLEU points and on en-xx translation by 1.1 BLEU points. On Voxpopuli ASR, our model matches the performance of an mSLAM model fine-tuned with an RNN-T decoder, despite using a relatively weaker sequence-to-sequence architecture. On text understanding tasks, our model improves by more than 6\% over mSLAM on XNLI, getting closer to the performance of mT5 models of comparable capacity on XNLI and TydiQA, paving the way towards a single model for all speech and text understanding tasks.
translated by 谷歌翻译
End-to-end Speech Translation (E2E ST) aims to translate source speech into target translation without generating the intermediate transcript. However, existing approaches for E2E ST degrade considerably when only limited ST data are available. We observe that an ST model's performance strongly correlates with its embedding similarity from speech and transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a novel method for few-shot speech-to-text translation. Our key idea is bridging word-level representations for both modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark. Our experiments demonstrate that WACO outperforms the best baseline methods by 0.7-8.5 BLEU points with only 1-hour parallel data. Code is available at https://anonymous.4open.science/r/WACO .
translated by 谷歌翻译
最近在单语数据和机器翻译(MT)进行微调的预培训方面取得了成功,但尚不清楚如何最好地利用预先训练的模型来完成给定的MT任务。本文在微调MT上的预训练模型时研究了冻结参数的好处和缺点。我们专注于1)微调仅在英语单语言数据的BART上训练的模型。2)微调一个模型,该模型对25种语言的单语言数据进行了培训,Mbart。对于Bart,我们通过冻结大多数模型参数并添加额外的位置嵌入来获得最佳性能。对于MBART,我们将大多数语言对的天真微调的性能与编码器以及大多数解码器搭配。编码器的注意参数对于微调最重要。当将自己限制为越南人对英语的室外训练套装时,我们看到了基线的最大进步。
translated by 谷歌翻译
端到端(E2E)语音到文本翻译(ST)通常取决于通过语音识别或文本翻译任务使用源成绩单预处理其编码器和/或解码器,否则翻译性能会大大下降。但是,笔录并不总是可用的,在文献中很少研究这种预处理的E2E ST。在本文中,我们重新审视了这个问题,并探讨了仅在语音翻译对培训的E2E ST质量的程度。我们重新审查了几种证明对ST的有益的技术,并提供了一系列最佳实践,这些实践使基于变压器的E2E ST系统偏向于从头开始训练。此外,我们提出了参数化的距离惩罚,以促进语音自我注意模型中的位置建模。在涵盖23种语言的四个基准测试中,我们的实验表明,在不使用任何成绩单或预处理的情况下,提议的系统达到甚至优于先前采用预处理的研究,尽管差距仍然存在(极为)低资源的设置。最后,我们讨论了神经声学特征建模,其中神经模型旨在直接从原始语音信号中提取声学特征,以简化电感偏见并为模型描述语音增添自由度。我们第一次证明了它的可行性,并在ST任务上表现出令人鼓舞的结果。
translated by 谷歌翻译
Speech translation (ST) is the task of directly translating acoustic speech signals in a source language into text in a foreign language. ST task has been addressed, for a long time, using a pipeline approach with two modules : first an Automatic Speech Recognition (ASR) in the source language followed by a text-to-text Machine translation (MT). In the past few years, we have seen a paradigm shift towards the end-to-end approaches using sequence-to-sequence deep neural network models. This paper presents our efforts towards the development of the first Broadcast News end-to-end Arabic to English speech translation system. Starting from independent ASR and MT LDC releases, we were able to identify about 92 hours of Arabic audio recordings for which the manual transcription was also translated into English at the segment level. These data was used to train and compare pipeline and end-to-end speech translation systems under multiple scenarios including transfer learning and data augmentation techniques.
translated by 谷歌翻译
This paper demonstrates that multilingual denoising pre-training produces significant performance gains across a wide variety of machine translation (MT) tasks. We present mBART -a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective . mBART is the first method for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. Pre-training a complete model allows it to be directly fine tuned for supervised (both sentence-level and document-level) and unsupervised machine translation, with no task-specific modifications. We demonstrate that adding mBART initialization produces performance gains in all but the highest-resource settings, including up to 12 BLEU points for low resource MT and over 5 BLEU points for many document-level and unsupervised models. We also show it also enables new types of transfer to language pairs with no bi-text or that were not in the pre-training corpus, and present extensive analysis of which factors contribute the most to effective pre-training.
translated by 谷歌翻译
最先进的编码器模型(例如,用于机器翻译(MT)或语音识别(ASR))作为原子单元构造并端到端训练。没有其他模型的任何组件都无法(重新)使用。我们描述了Legonn,这是一种使用解码器模块构建编码器架构的过程,可以在各种MT和ASR任务中重复使用,而无需进行任何微调。为了实现可重复性,每个编码器和解码器模块之间的界面都基于模型设计器预先定义的离散词汇,将其接地到边缘分布序列。我们提出了两种摄入这些边缘的方法。一个是可区分的,可以使整个网络的梯度流动,另一个是梯度分离的。为了使MT任务之间的解码器模块的可移植性用于不同的源语言和其他任务(例如ASR),我们引入了一种模态不可思议的编码器,该模态编码器由长度控制机制组成,以动态调整编码器的输出长度,以匹配预期的输入长度范围的范围预训练的解码器。我们提出了几项实验来证明Legonn模型的有效性:可以重复使用德国英语(DE-EN)MT任务的训练有素的语言解码器模块,而没有对Europarl English ASR和ROMANIAN-ENGLISH进行微调(RO)(RO)(RO)(RO) -en)MT任务以匹配或击败相应的基线模型。当针对数千个更新的目标任务进行微调时,我们的Legonn模型将RO-EN MT任务提高了1.5个BLEU点,并为Europarl ASR任务降低了12.5%的相对减少。此外,为了显示其可扩展性,我们从三个模块中构成了一个legonn ASR模型 - 每个模块都在三个不同数据集的不同端到端训练的模型中学习 - 将降低的减少降低到19.5%。
translated by 谷歌翻译
在所有人类语言对之间实现通用翻译是机器翻译的圣杯(MT)研究。虽然最近在大量的多语言MT中的进展是达到这一目标的一步,但它变得明显,即简单地通过在更加平行数据上训练扩展多语言MT系统是不可编译的,因为用于低资源和非英语的标记数据的可用性 - 姓氏对禁止有限。为此,我们展示了一种务实的方法,可以使用监督和自我监督目标的混合来构建涵盖数百种语言的多语种MT模型,具体取决于不同语言对的数据可用性。我们展示这两种训练范例之间的协同作用使模型能够在零资源设置中产生高质量的翻译,甚至超过监控的用于中资和中资和中资质。我们开展广泛的实验,了解多语言监督,域错配和平行和单机数据量的效果,以了解我们自我监督的多语言模型的质量。为了展示方法的可扩展性,我们培训具有200多种语言的模型,并在几个先前研究的语言上展示了对零资源翻译的高性能。我们希望我们的调查结果将成为踏脚石,以便为下一千种语言进行翻译。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
语音翻译模型无法直接处理较长的音频,例如TED Talks,必须将其分为较短的段。语音翻译数据集提供了音频的手动分割,这些音频在现实世界中不可用,而现有的分割方法通常会在推理时大大降低翻译质量。为了弥合训练的手动分割与推理的自动分割之间的差距,我们提出了有监督的混合音频分割(SHAS),该方法可以有效地从任何手动分段语音语料库中学习最佳分割。首先,我们使用预先训练的WAV2VEC 2.0的语音表示形式来训练分类器,以识别分段中所包含的帧。然后,通过概率分裂和诱导算法找到最佳的分裂点,该算法逐渐在最低概率的框架下逐渐分裂,直到所有段都低于预先指定的长度为止。在Mast-C和MedX上进行的实验表明,通过我们的方法生成的片段的翻译方法将手动分割的质量在5个语言对上进行质量。也就是说,SHAS保留了手动细分的95-98%的BLEU分数,而现有方法的87-93%。我们的方法还可以推广到不同的域,并以看不见的语言实现高零弹性性能。
translated by 谷歌翻译