基于LIDAR的应用的现有学习方法使用预先确定的波束配置下扫描的3D点,例如,光束的高度角度均匀分布。那些固定的配置是任务不可行的,因此只需使用它们即可导致次优性能。在这项工作中,我们采取了新的路线来学习优化给定应用程序的LIDAR波束配置。具体地,我们提出了一种基于加强学习的学习 - 优化(RL-L2O)框架,以便以不同的基于LIDAR的应用程序以端到端的方式自动优化光束配置。优化是通过目标任务的最终性能指导的,因此我们的方法可以通过任何基于LIDAR的应用程序轻松集成为简单的下载模块。例如,当需要低分辨率(低成本)LIDAR时,该方法特别有用,例如,用于以大规模的系统部署。我们使用方法来搜索两个重要任务的低分辨率LIDAR的光束配置:3D对象检测和本地化。实验表明,与基线方法相比,所提出的RL-L2O方法显着提高了两项任务的性能。我们认为,我们的方法与最近可编程Lidars的进步的组合可以启动基于LIDAR的积极感知的新的研究方向。代码在https://github.com/vnemlas/lidar_beam_selection上公开使用
translated by 谷歌翻译
大多数自治车辆都配备了LIDAR传感器和立体声相机。前者非常准确,但产生稀疏数据,而后者是密集的,具有丰富的纹理和颜色信息,但难以提取来自的强大的3D表示。在本文中,我们提出了一种新的数据融合算法,将准确的点云与致密的,但不太精确的点云组合在立体对。我们开发一个框架,将该算法集成到各种3D对象检测方法中。我们的框架从两个RGB图像中的2D检测开始,计算截肢和它们的交叉点,从立体声图像创建伪激光雷达数据,并填补了LIDAR数据缺少密集伪激光器的交叉区域的部分要点。我们训练多个3D对象检测方法,并表明我们的融合策略一致地提高了探测器的性能。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies -a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that it is not the quality of the data but its representation that accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations -essentially mimicking the LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance -raising the detection accuracy of objects within the 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo-image-based approaches. Our code is publicly available at https: //github.com/mileyan/pseudo_lidar.
translated by 谷歌翻译
单眼相机传感器对于智能车辆操作和自动驾驶帮助至关重要,并且在交通控制基础设施中也很大程度上使用。但是,校准单眼摄像机很耗时,通常需要大量的手动干预。在这项工作中,我们提出了一种外部摄像机校准方法,该方法通过利用来自图像和点云的语义分割信息来自动化参数估计。我们的方法依赖于对摄像头姿势的粗略初始测量,并建立在具有高精度定位的车辆上的雷达传感器上,以捕获相机环境的点云。之后,通过执行语义分段传感器数据的激光镜头到相机的注册来获得相机和世界坐标空间之间的映射。我们在模拟和现实世界中评估了我们的方法,以证明校准结果中的低误差测量值。我们的方法适用于基础设施传感器和车辆传感器,而它不需要摄像机平台的运动。
translated by 谷歌翻译
基于LIDAR的传感驱动器电流自主车辆。尽管进展迅速,但目前的激光雷达传感器在分辨率和成本方面仍然落后于传统彩色相机背后的二十年。对于自主驾驶,这意味着靠近传感器的大物体很容易可见,但远方或小物体仅包括一个测量或两个。这是一个问题,尤其是当这些对象结果驾驶危险时。另一方面,在车载RGB传感器中清晰可见这些相同的对象。在这项工作中,我们提出了一种将RGB传感器无缝熔化成基于LIDAR的3D识别方法。我们的方法采用一组2D检测来生成密集的3D虚拟点,以增加否则稀疏的3D点云。这些虚拟点自然地集成到任何基于标准的LIDAR的3D探测器以及常规激光雷达测量。由此产生的多模态检测器简单且有效。大规模NUSCENES数据集的实验结果表明,我们的框架通过显着的6.6地图改善了强大的中心点基线,并且优于竞争融合方法。代码和更多可视化可在https://tianweiy.github.io/mvp/上获得
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
在自主驾驶中,在使用深神经网络的爆炸中爆炸用于感知,预测和规划任务。由于自主车辆(AVS)更接近生产,多模态传感器输入和具有不同传感器平台的异构车队在该行业中变得越来越普遍。然而,神经网络架构通常是针对特定的传感器平台,并且对输入的变化并不稳健,使得缩放和模型部署的问题特别困难。此外,大多数玩家仍然将软件和硬件的问题视为完全独立的问题。我们提出了一个新的终端架构,广义传感器融合(GSF),其设计成使得传感器输入和目标任务都是模块化和可修改的。这使AV系统设计人员能够轻松地使用不同的传感器配置和方法进行实验,并使用在大型工程组织中共享的相同型号开辟了在异构船队上部署的能力。使用该系统,我们报告了实验结果,我们展示了昂贵的高密度(HD)激光雷达传感器的近似奇偶阶段,具有3D对象检测任务中的廉价低密度(LD)LIDAR加相机设置。这为行业铺平了道路,共同设计硬件和软件架构以及具有异质配置的大船队。
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. * Majority of the work done as an intern at Nuro, Inc. depth to point cloud 2D region (from CNN) to 3D frustum 3D box (from PointNet)
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
Figure 1: Results obtained from our single image, monocular 3D object detection network MonoDIS on a KITTI3D test image with corresponding birds-eye view, showing its ability to estimate size and orientation of objects at different scales.
translated by 谷歌翻译
自我监督的单眼深度预测提供了一种经济有效的解决方案,以获得每个像素的3D位置。然而,现有方法通常会导致不满意的准确性,这对于自治机器人至关重要。在本文中,我们提出了一种新的两级网络,通过利用低成本稀疏(例如4梁)LIDAR来推进自我监督单眼密集深度学习。与使用稀疏激光雷达的现有方法不同,主要以耗时的迭代后处理,我们的模型保留单眼图像特征和稀疏的LIDAR功能,以预测初始深度图。然后,有效的前馈细化网络进一步设计为校正伪3D空间中这些初始深度图中的错误,其具有实时性能。广泛的实验表明,我们所提出的模型显着优于所有最先进的自我监控方法,以及基于稀疏的激光器的方法,以及对自我监督单眼深度预测和完成任务。通过精确的密集深度预测,我们的模型优于基于最先进的稀疏激光雷达的方法(伪LIDAR ++)在Kitti排行榜上下游任务单眼3D对象检测超过68%。代码可在https://github.com/autoailab/fusiondepth获得
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
伪LIDAR表示的建议显着缩小了基于视觉的基于视觉激光痛的3D对象检测之间的差距。但是,当前的研究仅专注于通过利用复杂且耗时的神经网络来推动伪LIDAR的准确性提高。很少探索伪LIDAR代表的深刻特征来获得促进机会。在本文中,我们深入研究伪激光雷达表示,并认为3D对象检测的性能并不完全取决于高精度立体声深度估计。我们证明,即使对于不可靠的深度估计,通过适当的数据处理和精炼,它也可以达到可比的3D对象检测准确性。有了这一发现,我们进一步表明了使用伪大部分系统中快速但不准确的立体声匹配算法来实现低潜伏期响应的可能性。在实验中,我们开发了一个具有功能较低的立体声匹配预测指标的系统,并采用了提出的改进方案来提高准确性。对KITTI基准测试的评估表明,所提出的系统仅使用23毫秒的计算来实现最先进方法的竞争精度,这表明它是部署到真实CAR-HOLD应用程序的合适候选者。
translated by 谷歌翻译
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object depth, which must be inferred from object and scene cues due to the lack of direct range measurement. Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy. Our proposed solution, Categorical Depth Distribution Network (CaDDN), uses a predicted categorical depth distribution for each pixel to project rich contextual feature information to the appropriate depth interval in 3D space. We then use the computationally efficient bird's-eye-view projection and single-stage detector to produce the final output detections. We design CaDDN as a fully differentiable end-to-end approach for joint depth estimation and object detection. We validate our approach on the KITTI 3D object detection benchmark, where we rank 1 st among published monocular methods. We also provide the first monocular 3D detection results on the newly released Waymo Open Dataset. We provide a code release for CaDDN which is made available here.
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译