大型和深度电子医疗保健记录(EHR)数据集的可用性有可能更好地了解现实世界中的患者旅行,并鉴定出新的患者亚组。基于ML的EHR数据集合主要是工具驱动的,即基于可用或新开发的方法的构建。但是,这些方法,它们的输入要求以及最重要的是,通常难以解释产量,尤其是没有深入的数据科学或统计培训。这危害了需要进行可行且具有临床意义的解释的最后一步。这项研究研究了使用大型EHR数据集和多种聚类方法进行临床研究的方法进行大规模进行患者分层分析的方法。我们已经开发了几种工具来促进无监督的患者分层结果的临床评估和解释,即模式筛查,元聚类,替代建模和策展。这些工具可以在分析中的不同阶段使用。与标准分析方法相比,我们证明了凝结结果并优化分析时间的能力。在元聚类的情况下,我们证明了患者簇的数量可以从72减少到3。在另一个分层的结果中,通过使用替代模型,我们可以迅速确定如果有血液钠测量值可用,则可以对心力衰竭患者进行分层。由于这是对所有心力衰竭患者进行的常规测量,因此表明数据偏差。通过使用进一步的队列和特征策展,可以去除这些患者和其他无关的特征以提高临床意义。这些示例显示了拟议方法的有效性,我们希望鼓励在该领域的进一步研究。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
电子医疗保健记录是可用于患者分层的重要信息来源,以探索新型疾病表型。但是,它们可能具有挑战性,因为数据往往稀疏和不规则地采样。解决这些限制的一种方法是学习密集的嵌入,其代表使用经常性神经网络AutoEncoder(RNN-AE)的单个患者轨迹。该过程可以易于对不需要的数据偏差影响。我们表明,使用先前提出的RNN-AE模型的患者嵌入和群集可能受到轨迹偏差的影响,这意味着结果由每个患者轨迹中包含的数据量主导,而不是临床相关细节。我们调查了2个数据集(来自不同医院)和2个疾病区域的偏差,以及使用患者轨迹的不同部分。我们使用2个以前公布的基线方法的结果表示事件到最终轨迹的情况下特别强烈的偏见。我们提出了一种方法,可以使用RNN-AE顶部的对抗培训方案来克服这个问题。我们的研究结果表明,我们的方法可以减少所有情况下的轨迹偏差。
translated by 谷歌翻译
纵向电子健康记录(EHR)数据的可用性增加导致改善对疾病的理解和新颖表型的发现。大多数聚类算法仅关注患者轨迹,但具有类似轨迹的患者可能具有不同的结果。寻找不同轨迹和结果的患者亚组可以引导未来的药物开发,改善临床试验的招募。我们使用可以加权的重建,结果和聚类损耗开发经常性神经网络自动拓群体以群集EHR数据,以查找不同类型的患者群集。我们展示我们的模型能够从数据偏差和结果差异中发现已知的集群,表现优于基线模型。我们展示了29,222,229美元糖尿病患者的模型性能,显示出发现患有不同轨迹和不同结果的患者的簇,可用于帮助临床决策。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
肥胖是一个重大的健康问题,增加了各种主要慢性病的风险,如糖尿病,癌症和中风。虽然通过横断面BMI录音识别的肥胖作用已经过分研究,但BMI轨迹的作用远远不大。在这项研究中,我们利用从大型和地理位置的EHR数据集中提取的BMI轨迹捕获大约200万个人的健康状况为期六年的健康状况。我们根据BMI轨迹定义九个新的可解释和基于证据的变量,以使用K-Means聚类方法将患者聚类为子组。我们在人口统计学,社会经济和生理测量变量方面彻底审查了每个集群特征,以指定簇中患者的不同性质。在我们的实验中,已被重新建立肥胖,高血压,阿尔茨海默和痴呆症的肥胖,高血压,阿尔茨海默氏症和痴呆症的直接关系,并且已经发现有几种慢性疾病的特异性特征的不同簇符合或与现有的知识体系互补。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
影响重症患者护理的许多基本问题会带来类似的分析挑战:医生无法轻易估计处于危险的医疗状况或治疗的影响,因为医疗状况和药物的因果影响是纠缠的。他们也无法轻易进行研究:没有足够的高质量数据来进行高维观察性因果推断,并且通常无法在道德上进行RCT。但是,机械知识可获得,包括如何吸收人体药物,并且这些知识与有限数据的结合可能就足够了 - 如果我们知道如何结合它们。在这项工作中,我们提出了一个框架,用于在这些复杂条件下对重症患者的因果影响估算:随着时间的流逝,药物与观察之间的相互作用,不大的患者数据集以及可以代替缺乏数据的机械知识。我们将此框架应用于影响重症患者的极其重要的问题,即癫痫发作和大脑中其他潜在有害的电气事件的影响(称为癫痫样活动 - EA)对结局。鉴于涉及的高赌注和数据中的高噪声,可解释性对于解决此类复杂问题的故障排除至关重要。我们匹配的小组的解释性使神经科医生可以执行图表审查,以验证我们的因果分析的质量。例如,我们的工作表明,患者经历了高水平的癫痫发作般的活动(75%的EA负担),并且未经治疗的六个小时的窗口未受治疗,平均而言,这种不良后果的机会增加了16.7%。作为严重的大脑损伤,终生残疾或死亡。我们发现患有轻度但长期EA的患者(平均EA负担> = 50%)患有不良结果的风险增加了11.2%。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
合成健康数据在共享数据以支持生物医学研究和创新医疗保健应用的发展时有可能减轻隐私问题。基于机器学习,尤其是生成对抗网络(GAN)方法的现代方法生成的现代方法继续发展并表现出巨大的潜力。然而,缺乏系统的评估框架来基准测试方法,并确定哪些方法最合适。在这项工作中,我们引入了一个可推广的基准测试框架,以评估综合健康数据的关键特征在实用性和隐私指标方面。我们将框架应用框架来评估来自两个大型学术医疗中心的电子健康记录(EHRS)数据的合成数据生成方法。结果表明,共享合成EHR数据存在公用事业私人关系权衡。结果进一步表明,在每个用例中,在所有标准上都没有明确的方法是最好的,这使得为什么需要在上下文中评估合成数据生成方法。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
机器学习和临床研究社区利用现实世界数据(RWD)的方法,包括电子健康记录中捕获的数据(EHR)截然不同。虽然临床研究人员谨慎使用RWD进行临床研究,但用于医疗团队的ML会消费公共数据集,并以最少的审查来开发新算法。这项研究通过开发和验证ML-DQA来弥合这一差距,ML-DQA是基于RWD最佳实践的数据质量保证框架。 ML-DQA框架适用于两个地理位置的五个ML项目,分别是不同的医疗状况和不同的人群。在这五个项目中,共收集了247,536名患者的RWD,共有2,999项质量检查和24份质量报告。出现了五种可推广的实践:所有项目都使用类似的方法来分组冗余数据元素表示;所有项目都使用自动实用程序来构建诊断和药物数据元素;所有项目都使用了一个共同的基于规则的转换库;所有项目都使用统一的方法将数据质量检查分配给数据元素;所有项目都使用类似的临床裁决方法。包括临床医生,数据科学家和受训者在内的平均有5.8个人参与每个项目实施ML-DQA,每个项目平均进行了23.4个数据元素。这项研究证明了ML-DQA在医疗项目中的重要性作用,并为团队提供了开展这些基本活动的框架。
translated by 谷歌翻译
在过去二十年中,识别具有不同纵向数据趋势的群体的方法已经成为跨越许多研究领域的兴趣。为了支持研究人员,我们总结了文献关于纵向聚类的指导。此外,我们提供了一种纵向聚类方法,包括基于基团的轨迹建模(GBTM),生长混合模拟(GMM)和纵向K平均值(KML)。该方法在基本级别引入,并列出了强度,限制和模型扩展。在最近数据收集的发展之后,将注意这些方法的适用性赋予密集的纵向数据(ILD)。我们展示了使用R.中可用的包在合成数据集上的应用程序的应用。
translated by 谷歌翻译
COVID-19的大流行造成了毁灭性的经济和社会破坏,使全球医疗机构的资源紧张。这导致全国范围内呼吁模型预测Covid-19患者的住院和严重疾病,以告知有限医疗资源的分配。我们回应针对儿科人群的其中一种。为了应对这一挑战,我们使用电子健康记录研究了针对儿科人群的两项预测任务:1)预测哪些儿童更有可能住院,而2)在住院儿童中,哪些孩子更有可能出现严重的症状。我们通过新颖的机器学习模型MEDML应对国家儿科Covid-19数据挑战。 MEDML根据超过600万个医学概念的医学知识和倾向得分提取了最预测的特征,并通过图神经网络(GNN)结合了异质医学特征之间的功能间关系。我们使用来自国家队列协作(N3C)数据集的数据评估了143,605名患者的MEDML,并在143,605名患者的住院预测任务中评估了严重性预测任务的11,465名患者。我们还报告了详细的小组级和个人级特征的重要性分析,以评估模型的解释性。与最佳的基线机器学习模型相比,MEDML的AUROC得分高达7%,AUPRC得分高达14%,并且自大流行以来的所有九个国家地理区域以及所有三个月的跨度都表现良好。我们的跨学科研究团队开发了一种将临床领域知识纳入新型机器学习模型的框架的方法,该框架比当前最新的数据驱动的功能选择方法更具预测性和可解释。
translated by 谷歌翻译
可说明的人工智能(XAI)被确定为使用机器学习(ML)模型进行预测时确定功能的重要性的可行方法。在这项研究中,我们创建了将个人健康信息(例如,他们的药物历史和合并症)作为输入的模型,并预测个体将具有急性冠状动脉综合征(ACS)不利结果的可能性。使用Xai,我们量化了特定药物对这些ACS预测的贡献,从而产生了基于XAI的药物检测技术,使用ACS作为检测的不利结果的示例。鉴定了1993年至2009年在1993年至2009年期间提供的65岁以上的人(解剖治疗化学(ATC)级别M)或心血管系统(ATC类C)药物,以及其药物历史,组合和其他关键特征来自联系的西澳大利亚数据集。培训多种ML模型以预测这些个体如果这些个体具有ACS相关的不利结果(即,用于ACS的放电诊断的死亡或住院),并且使用各种ML和XAI技术来计算哪种特征 - 特别是哪种药物 - 导致这些预测。发现ROFecoxib和Celecoxib的药物分配特征对ACS相关的不利结果预测(平均)的贡献大于零效果,并且发现ACS相关的不利结果可以预测72%的准确度。此外,发现Xai库石灰和Shap成功识别重要和不重要的功能,具有略微优于石灰的形状。 ML培训的ML模型与XAI算法串联的连接行政健康数据集可以成功地量化特征重要性,并且随着进一步的开发,可能被用作药物检测技术。
translated by 谷歌翻译
尽管机器学习方法已在金融领域广泛使用,但在非常成功的学位上,这些方法仍然可以根据解释性,可比性和可重复性来定制特定研究和不透明。这项研究的主要目的是通过提供一种通用方法来阐明这一领域,该方法是调查 - 不合Snostic且可解释给金融市场从业人员,从而提高了其效率,降低了进入的障碍,并提高了实验的可重复性。提出的方法在两个自动交易平台组件上展示。也就是说,价格水平,众所周知的交易模式和一种新颖的2步特征提取方法。该方法依赖于假设检验,该假设检验在其他社会和科学学科中广泛应用,以有效地评估除简单分类准确性之外的具体结果。提出的主要假设是为了评估所选的交易模式是否适合在机器学习设置中使用。在整个实验中,我们发现在机器学习设置中使用所考虑的交易模式仅由统计数据得到部分支持,从而导致效果尺寸微不足道(反弹7- $ 0.64 \ pm 1.02 $,反弹11 $ 0.38 \ pm 0.98 $,并且篮板15- $ 1.05 \ pm 1.16 $),但允许拒绝零假设。我们展示了美国期货市场工具上的通用方法,并提供了证据表明,通过这种方法,我们可以轻松获得除传统绩效和盈利度指标之外的信息指标。这项工作是最早将这种严格的统计支持方法应用于金融市场领域的工作之一,我们希望这可能是更多研究的跳板。
translated by 谷歌翻译