a *是图形搜索和路径查找的经典和流行方法。它假设存在启发式函数$ h(u,t)$,以估计从任何输入节点$ u $到目的$ t $的最短距离。传统上,通过域专家手工制度。然而,在过去的几年里,对学习启发式功能的兴趣日益增长。这种学习的启发式估计基于这些节点的“特征”的给定节点之间的距离。在本文中,我们正规化并启动了对这种特征的启发式的研究。特别地,我们考虑由常规嵌入和距离标记方案引起的启发式,并为用于表示每个曲线节点的尺寸或比特数以及A *算法的运行时间来提供下限。我们还表明,在自然的假设下,我们的下限几乎是最佳的。
translated by 谷歌翻译
我们考虑从数据学习树结构ising模型的问题,使得使用模型计算的后续预测是准确的。具体而言,我们的目标是学习一个模型,使得小组变量$ S $的后海报$ p(x_i | x_s)$。自推出超过50年以来,有效计算最大似然树的Chow-Liu算法一直是学习树结构图形模型的基准算法。 [BK19]示出了关于以预测的局部总变化损耗的CHOW-LIU算法的样本复杂性的界限。虽然这些结果表明,即使在恢复真正的基础图中也可以学习有用的模型是不可能的,它们的绑定取决于相互作用的最大强度,因此不会达到信息理论的最佳选择。在本文中,我们介绍了一种新的算法,仔细结合了Chow-Liu算法的元素,以便在预测的损失下有效地和最佳地学习树ising模型。我们的算法对模型拼写和对抗损坏具有鲁棒性。相比之下,我们表明庆祝的Chow-Liu算法可以任意次优。
translated by 谷歌翻译
图形上的分层聚类是数据挖掘和机器学习中的一项基本任务,并在系统发育学,社交网络分析和信息检索等领域中进行了应用。具体而言,我们考虑了由于Dasgupta引起的层次聚类的最近普及的目标函数。以前(大约)最小化此目标函数的算法需要线性时间/空间复杂性。在许多应用程序中,底层图的大小可能很大,即使使用线性时间/空间算法,也可以在计算上具有挑战性。结果,人们对设计只能使用sublinear资源执行全局计算的算法有浓厚的兴趣。这项工作的重点是在三个经过良好的sublinear计算模型下研究大量图的层次聚类,分别侧重于时空,时间和通信,作为要优化的主要资源:(1)(动态)流模型。边缘作为流,(2)查询模型表示,其中使用邻居和度查询查询图形,(3)MPC模型,其中图边缘通过通信通道连接的几台机器进行了分区。我们在上面的所有三个模型中设计用于层次聚类的sublinear算法。我们算法结果的核心是图表中的剪切方面的视图,这使我们能够使用宽松的剪刀示意图进行分层聚类,同时仅引入目标函数中的较小失真。然后,我们的主要算法贡献是如何在查询模型和MPC模型中有效地构建所需形式的切割稀疏器。我们通过建立几乎匹配的下限来补充我们的算法结果,该界限排除了在每个模型中设计更好的算法的可能性。
translated by 谷歌翻译
我们根据计算一个扎根于每个顶点的某个加权树的家族而构成的相似性得分提出了一种有效的图形匹配算法。对于两个erd \ h {o} s-r \'enyi图$ \ mathcal {g}(n,q)$,其边缘通过潜在顶点通信相关联,我们表明该算法正确地匹配了所有范围的范围,除了所有的vertices分数外,有了很高的概率,前提是$ nq \ to \ infty $,而边缘相关系数$ \ rho $满足$ \ rho^2> \ alpha \ ailpha \大约0.338 $,其中$ \ alpha $是Otter的树木计数常数。此外,在理论上是必需的额外条件下,可以精确地匹配。这是第一个以显式常数相关性成功的多项式图匹配算法,并适用于稀疏和密集图。相比之下,以前的方法要么需要$ \ rho = 1-o(1)$,要么仅限于稀疏图。该算法的症结是一个经过精心策划的植根树的家族,称为吊灯,它可以有效地从同一树的计数中提取图形相关性,同时抑制不同树木之间的不良相关性。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
本文讨论了ERD \ H {O} S-R \'enyi图的图形匹配或网络对齐问题,可以将其视为图同构问题的嘈杂平均案例版本。令$ g $和$ g'$ be $ g(n,p)$ erd \ h {o} s--r \'enyi略微图形,并用其邻接矩阵识别。假设$ g $和$ g'$是相关的,因此$ \ mathbb {e} [g_ {ij} g'_ {ij}] = p(1- \ alpha)$。对于置换$ \ pi $,代表$ g $和$ g'$之间的潜在匹配,用$ g^\ pi $表示从$ \ pi $的$ g $的顶点获得的图表。观察$ g^\ pi $和$ g'$,我们的目标是恢复匹配的$ \ pi $。在这项工作中,我们证明,在(0,1] $中,每$ \ varepsilon \ in(0,1] $,都有$ n_0> 0 $,具体取决于$ \ varepsilon $和绝对常数$ \ alpha_0,r> 0 $,带有以下属性。令$ n \ ge n_0 $,$(1+ \ varepsilon)\ log n \ le np \ le n^{\ frac {1} {r \ log \ log \ log n}} $ (\ alpha_0,\ varepsilon/4)$。有一个多项式时算法$ f $,因此$ \ m athbb {p} \ {f(g^\ pi,g')= \ pi \} = 1-o (1)$。这是第一种多项式时算法,它恢复了相关的ERD \ H {O} S-r \'enyi图与具有恒定相关性的相关性图与高概率相关性的确切匹配。该算法是基于比较的比较与图形顶点关联的分区树。
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
随机块模型(SBM)是一个随机图模型,其连接不同的顶点组不同。它被广泛用作研究聚类和社区检测的规范模型,并提供了肥沃的基础来研究组合统计和更普遍的数据科学中出现的信息理论和计算权衡。该专着调查了最近在SBM中建立社区检测的基本限制的最新发展,无论是在信息理论和计算方案方面,以及各种恢复要求,例如精确,部分和弱恢复。讨论的主要结果是在Chernoff-Hellinger阈值中进行精确恢复的相转换,Kesten-Stigum阈值弱恢复的相变,最佳的SNR - 单位信息折衷的部分恢复以及信息理论和信息理论之间的差距计算阈值。该专着给出了在寻求限制时开发的主要算法的原则推导,特别是通过绘制绘制,半定义编程,(线性化)信念传播,经典/非背带频谱和图形供电。还讨论了其他块模型的扩展,例如几何模型和一些开放问题。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
随着大型网络在重要领域的相关领域的相关性,例如对疾病传播的联系网络的研究,或社交网络对地缘政治的影响,已经有必要研究可扩展到非常大的网络的机器学习工具,通常包含数百万节点。一种主要类别可扩展算法称为网络表示学习或网络嵌入。这些算法尝试通过首次运行多个随机散步,然后使用观察到的随机步行段中的每对节点的共同数量来学习网络功能(例如〜节点)的表示,以获得一些节点的低维表示欧几里德空间。本文的目的是严格地了解两个主要算法,深途化和Node2VEC的性能,以恢复与地面真理社区的规范网络模型的社区。根据图的稀疏性,我们发现所需的随机步道段的长度,使得相应的观察到的共生窗口能够对底层社区分配的几乎精确恢复。我们证明,考虑到一些固定的共同发生窗口,使用随机散步的Node2Vec与低横向概率的随机散步可以相比,与使用简单随机散步的深度扫视相比,稀疏网络可以成功。此外,如果稀疏参数低,我们提供了证据表明这些算法几乎完全恢复可能不会成功。该分析需要开发用于对具有底层低级结构的随机网络计数的通用工具,这与独立兴趣。
translated by 谷歌翻译
我们的世界充满了不对称。重力和风能使与回来更容易到达地方。诸如家谱图和引文图之类的社会文物固有地定向。在强化学习和控制中,最佳目标策略很少是可逆的(对称性)。这些不对称结构支持的距离函数称为准函数。尽管出现了共同的外观,但对准对象的学习几乎没有研究。我们的理论分析表明,一种通用的学习算法,包括不受限制的多层感知器(MLP),事实证明,学习与培训数据一致的准学学都无法学习。相比之下,我们提出的泊松准嵌入(PQE)是第一个准学的学习配方,两者都可以通过基于梯度的优化来学习,并且具有强大的性能保证。在随机图,社交图和离线Q学习上进行的实验证明了其对许多常见基线的有效性。
translated by 谷歌翻译
Random graph models with community structure have been studied extensively in the literature. For both the problems of detecting and recovering community structure, an interesting landscape of statistical and computational phase transitions has emerged. A natural unanswered question is: might it be possible to infer properties of the community structure (for instance, the number and sizes of communities) even in situations where actually finding those communities is believed to be computationally hard? We show the answer is no. In particular, we consider certain hypothesis testing problems between models with different community structures, and we show (in the low-degree polynomial framework) that testing between two options is as hard as finding the communities. In addition, our methods give the first computational lower bounds for testing between two different `planted' distributions, whereas previous results have considered testing between a planted distribution and an i.i.d. `null' distribution.
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
Originally, tangles were invented as an abstract tool in mathematical graph theory to prove the famous graph minor theorem. In this paper, we showcase the practical potential of tangles in machine learning applications. Given a collection of cuts of any dataset, tangles aggregate these cuts to point in the direction of a dense structure. As a result, a cluster is softly characterized by a set of consistent pointers. This highly flexible approach can solve clustering problems in various setups, ranging from questionnaires over community detection in graphs to clustering points in metric spaces. The output of our proposed framework is hierarchical and induces the notion of a soft dendrogram, which can help explore the cluster structure of a dataset. The computational complexity of aggregating the cuts is linear in the number of data points. Thus the bottleneck of the tangle approach is to generate the cuts, for which simple and fast algorithms form a sufficient basis. In our paper we construct the algorithmic framework for clustering with tangles, prove theoretical guarantees in various settings, and provide extensive simulations and use cases. Python code is available on github.
translated by 谷歌翻译
重新配置图中的两个最短路径意味着通过一次改变一个顶点来修改一个最短的路径,使得所有中间路径也是最短路径。这个问题有几个自然应用,即:(a)改造道路网络,(b)在同步多处理设置中重新排出数据包,(c)运输集装箱存货问题,以及(d)列车编组问题。在作为图形问题的建模时,(a)是最常规的情况而(b),(c)和(d)是对不同图形类的限制。我们表明(a)是棘手的,即使对于问题的轻松变体也是如此。对于(b),(c)和(d),我们提出了有效的算法来解决各自的问题。我们还将问题概括为当最多$ k $(对于固定整数$ k \ geq k \ ge $ k \ geq 2 $)一次连续的顶点一次可以一次更改。
translated by 谷歌翻译
The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences.This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds.The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed.
translated by 谷歌翻译
Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.
translated by 谷歌翻译