我们证明了深度神经网络(NNS)的损失景观的一般嵌入原理,其解除了NNS的损失景观的层次结构,即NN的损失景观包含所有较窄NN的所有关键点。通过构建一类临界嵌入来获得该结果,该临界嵌入物将较窄的Nn的任何临界点映射到具有相同输出功能的目标Nn的临界点。通过发现广泛的一般兼容性嵌入式,我们提供了嵌入来自NNS的关键点的关键子多种尺寸的总估计。我们进一步证明了任何临界嵌入的Irfreversiblility属性,即临界点的Hessian矩阵的负/零/正小叶值的数量可能增加,但由于NN通过嵌入越来越宽,因此从未减少。使用一般兼容的临界嵌入的特殊实现,我们证明了一个严格的必要条件,以便是一个完全不变的临界点,从未成为任何关键嵌入的严格鞍端。该结果暗示宽NNS中严格鞍点的常见,这可能是在实践中广泛观察到的宽NNS易于优化的重要原因。
translated by 谷歌翻译
了解深神经网络的损失景观结构(DNN)显然是重要的。在这项工作中,我们证明了一个嵌入原则,即DNN“包含”所有较窄DNN的所有关键点的损失景观。更确切地说,我们提出了一个临界嵌入,使得任何临界点,例如较窄的DNN的临界点,例如局部或全局最小值,可以嵌入到目标DNN的临界点/超平面,具有更高的退化性并保持DNN输出功能。关键点的嵌入结构与损耗功能和训练数据无关,显示与蛋白质折叠等其他非凸起问题的显着差异。凭经验,我们发现宽DNN通常被嵌入来自窄DNN的高度简并关键点引起。嵌入原理为广泛DNN的普遍易于优化提供了解释,并且在训练期间揭开潜在的隐式低复杂性正则化。总体而言,我们的工作为DNNS的损失景观提供了骨架及其含义,可以在附近预期更精确和全面的理解
translated by 谷歌翻译
了解深度学习的理论研究非常重要。在这项工作中,我们发现了一个嵌入原则,即nn的损失格局“包含”浅NN损失景观的所有关键点。我们发现的关键工具是在这项工作中提出的关键起重操作员,该操作员将网络的任何关键点映射到任何更深层网络的关键流形,同时保留输出。该原则为许多广泛观察到的DNN行为提供了新的见解。关于深层网络的易于培训,我们表明可以将NN的局部最低限制为更深的NN的严格鞍点。关于批准归一化的加速度效应,我们证明了批处理的归一化有助于避免通过抑制层线性化来从较浅的NN中提起的临界歧管。我们还证明,增加训练数据会缩小临界歧管,这可能导致训练加速,如实验中所示。总体而言,我们对深度嵌入原则的发现发现了深度学习损失格局的深度层次结构,这为进一步研究DNN的深度作用提供了坚实的基础。
translated by 谷歌翻译
重要的是要了解流行的正则化方法如何帮助神经网络训练找到良好的概括解决方案。在这项工作中,我们从理论上得出了辍学的隐式正则化,并研究了损失函数的Hessian矩阵与辍学噪声的协方差矩阵之间的关系,并由一系列实验支持。然后,我们在数值上研究了辍学的隐式正规化的两个含义,这直觉上合理化了辍学有助于概括。首先,我们发现辍学的训练与实验中的标准梯度下降训练相比,发现具有最低最小的神经网络,而隐式正则化是找到平坦溶液的关键。其次,经过辍学的训练,隐藏神经元的输入权重(隐藏神经元的输入权重由其输入层到隐藏的神经元及其偏见项组成),往往会凝结在孤立的方向上。凝结是非线性学习过程中的一个功能,它使神经网络的复杂性低。尽管我们的理论主要集中在最后一个隐藏层中使用的辍学,但我们的实验适用于训练神经网络中的一般辍学。这项工作指出了与随机梯度下降相比,辍学的独特特征,是完全理解辍学的重要基础。
translated by 谷歌翻译
在本文中,我们分析了用Relu,泄漏的Relu以及二次激活的一个隐藏层网络的真实丧失的景观。在所有三种情况下,我们在目标函数所仿射的情况下提供了完整的关键点的分类。特别是,我们表明没有局部最大值,并阐明马鞍点的结构。此外,我们证明了非全球局部最小值只能由“死”recu神经元引起。特别是,它们不会出现在泄漏的Relu或二次激活的情况下。我们的方法是组合性质,并在仔细分析可能发生的不同类型的隐性神经元。
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
理解梯度下降对Relu网络的概括能力的隐性偏见一直是机器学习研究中的重要研究主题。不幸的是,即使对于经过正方形损失训练的单个Relu神经元,最近也表现出不可能以模型参数规范来表征隐式正则化(Vardi&Shamir,2021)。为了缩小理解Relu网络的有趣概括行为的差距,在训练单神经元网络时,我们在这里检查参数空间中的梯度流动动力学。具体来说,我们发现了在支持向量方面的隐性偏见,该偏见在Relu网络良好地概括的原因和如何延伸方面起着关键作用。此外,我们分析了梯度流相对于初始化规范的幅度,并表明学习重量的规范严格通过梯度流量增加。最后,我们证明了单个Relu神经元的全球融合,以$ d = 2 $ case。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
我们介绍了一类完全连接的神经网络,其激活功能而不是点,而是仅取决于其规范来缩回特征向量。我们称此类网络径向神经网络,扩展了先前在旋转模棱两可的网络上的工作,该网络认为将激活重新激活较少。我们证明了径向神经网络的通用近似定理,包括在更困难的宽度和无界域的情况下。我们的证明技术是新颖的,与偶然的情况不同。此外,径向神经网络在可训练参数的矢量空间上表现出丰富的基础对称性。分解这些对称性会导致实用的无损模型压缩算法。通过梯度下降对压缩模型的优化等效于整个模型的投影梯度下降。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
样本是否足够丰富,至少在本地确定神经网络的参数?为了回答这个问题,我们通过固定其某些权重的值来介绍给定深层神经网络的新局部参数化。这使我们能够定义本地提升操作员,其倒置是高维空间的平滑歧管的图表。Deep Relu神经网络实现的函数由依赖样本的线性操作员组成局部提升。我们从这种方便的表示中得出了局部可识别性的几何必要条件。查看切线空间,几何条件提供了:1/可识别性的尖锐而可测试的必要条件以及2/可识别局部可识别性的尖锐且可测试的足够条件。可以使用反向传播和矩阵等级计算对条件的有效性进行数值测试。
translated by 谷歌翻译
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep overparameterized neural network with residual connections (ResNet). Our analysis relies on the particular structure of the Gram matrix induced by the neural network architecture. This structure allows us to show the Gram matrix is stable throughout the training process and this stability implies the global optimality of the gradient descent algorithm. We further extend our analysis to deep residual convolutional neural networks and obtain a similar convergence result.
translated by 谷歌翻译
过分分度化是没有凸起的关键因素,以解释神经网络的全局渐变(GD)的全局融合。除了研究良好的懒惰政权旁边,已经为浅网络开发了无限宽度(平均场)分析,使用凸优化技术。为了弥合懒惰和平均场制度之间的差距,我们研究残留的网络(RESNET),其中残留块具有线性参数化,同时仍然是非线性的。这种Resnets承认无限深度和宽度限制,在再现内核Hilbert空间(RKHS)中编码残差块。在这个限制中,我们证明了当地的Polyak-Lojasiewicz不等式。因此,每个关键点都是全球最小化器和GD的局部收敛结果,并检索懒惰的制度。与其他平均场研究相比,它在残留物的表达条件下适用于参数和非参数案。我们的分析导致实用和量化的配方:从通用RKHS开始,应用随机傅里叶特征来获得满足我们的表征条件的高概率的有限维参数化。
translated by 谷歌翻译
具有整流线性单元(Relu)非线性的神经网络由参数$ \ Theta $的矢量描述,并实现为分段线性连续函数$ r _ {\ theta}:x \ in \ mathbb r ^ {d} \ mapsto r _ {\ theta}(x)\ in \ mathbb r ^ {k} $。自然缩放和排列在参数$ \ theta $留下的实现不变,导致相同的参数类,产生相同的实现。这些考虑因而导致可识别性的概念 - 从其实现$ r _ {\} $的唯一知识中恢复(等价类别)$ \ theta $的能力。本文的总体目标是介绍任何深度的Relu神经网络,$ \ Phi(\ Theta)$的嵌入,即不变于缩放,并且提供网络实现的本地线性参数化。利用这两个关键属性,我们得出了一些条件,在这种情况下,深度relu网络确实可以从有限一组样本的实现的知识局部地识别$ x_ {i} \ in \ mathbb r ^ {d} $。我们在更深入的深度上研究了浅层案例,为网络建立了必要的和充分条件,从界限子集$ \ Mathcal X \ subseteq \ MathBB r ^ {d} $识别。
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
In this paper, we prove a conjecture published in 1989 and also partially address an open problem announced at the Conference on Learning Theory (COLT) 2015. With no unrealistic assumption, we first prove the following statements for the squared loss function of deep linear neural networks with any depth and any widths: 1) the function is non-convex and non-concave, 2) every local minimum is a global minimum, 3) every critical point that is not a global minimum is a saddle point, and 4) there exist "bad" saddle points (where the Hessian has no negative eigenvalue) for the deeper networks (with more than three layers), whereas there is no bad saddle point for the shallow networks (with three layers). Moreover, for deep nonlinear neural networks, we prove the same four statements via a reduction to a deep linear model under the independence assumption adopted from recent work. As a result, we present an instance, for which we can answer the following question: how difficult is it to directly train a deep model in theory? It is more difficult than the classical machine learning models (because of the non-convexity), but not too difficult (because of the nonexistence of poor local minima). Furthermore, the mathematically proven existence of bad saddle points for deeper models would suggest a possible open problem. We note that even though we have advanced the theoretical foundations of deep learning and non-convex optimization, there is still a gap between theory and practice.
translated by 谷歌翻译