近年来,最终用户的多个(边缘)设备中有大量分散数据,而由于法律或法规,分散数据的聚合对机器学习工作仍然困难。联合学习(FL)作为处理分散数据而不分享敏感原始数据的有效方法,同时协作培训全球机器学习模型。 FL中的服务器需要在培训过程中选择(和计划)设备。但是,具有FL的多个作业的设备的调度仍然是一个关键和打开的问题。在本文中,我们提出了一种新的多工作FL框架,以实现多个作业的并行培训过程。该框架包括系统模型和两个调度方法。在系统模型中,我们提出了多个作业的并行培训过程,并根据各种工作培训过程基于培训时间和各种设备的数据公平构建成本模型。我们提出了一种基于钢筋的基于学习的方法和基于贝叶斯优化的方法,以便为多个作业调度设备,同时最小化成本。我们通过多个工作和数据集进行广泛的实验。实验结果表明,我们提出的方法在培训时间(速度越快8.67倍)和准确性(高度高达44.6%)方面显着优于基线。
translated by 谷歌翻译
深神经网络(DNN)利用多层和大量参数来实现优异的性能。 DNN模型的培训过程通常处理具有许多稀疏功能的大规模输入数据,引起高输入/输出(IO)的成本,而一些层数是计算密集型的。培训过程通常利用分布式计算资源来减少培训时间。此外,异构计算资源,例如CPU,多种类型的GPU,可用于分布式训练过程。因此,多个层对不同计算资源的调度对于训练过程至关重要。为了使用异构计算资源有效地训练DNN模型,我们提出了一种分布式框架,即桨式异构参数服务器(Paddle-Heterps),由分布式架构和加强学习(RL)的调度方法组成。与现有框架相比,Paddle-Heterps的优点是三倍。首先,Paddle-hotior是通过异构计算资源的多样化工作负载的高效培训过程。其次,Paddle-Heterps利用基于RL的方法以有效地将每层的工作量调度到适当的计算资源,以最小化成本,同时满足吞吐量约束。第三,Paddle-hotips管理分布式计算资源之间的数据存储和数据通信。我们进行了广泛的实验,以表明Paddle-hotors在吞吐量方面显着优于最先进的方法(更高14.5倍)和货币成本(312.3%较小)。框架的代码可在:https://github.com/paddlepaddle/paddle公开使用。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
在联合学习(FL)设置中,许多设备有助于培训通用模型。我们提出了一种选择提供更新的设备,以实现改进的概括,快速收敛和更好的设备级别性能。我们制定了最低 - 最大优化问题,并将其分解为原始偶的设置,在该设置中,双重性差距用于量化设备级的性能。我们的策略通过\ emph {exploitation}的随机设备选择,通过简化的设备贡献来结合数据新鲜度。这在概括和个性化方面都改善了受过训练的模型的性能。在开发阶段,应用了修改的截短蒙特卡洛(TMC)方法,以估计设备的贡献并降低开销的通信。实验结果表明,所提出的方法具有竞争性能,对基线方案的沟通开销和竞争性个性化绩效较低。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
联合学习(FL)支持地理分布式设备的培训模型。然而,传统的FL系统采用集中式同步策略,提高了高通信压力和模型泛化挑战。 FL的现有优化未能加速异构设备的培训或遭受差的通信效率。在本文中,我们提出了一个支持在异构设备上分散的异步训练的框架的Hadfl。使用本地数据的异质性感知本地步骤本地培训设备。在每个聚合循环中,基于执行模型同步和聚合的概率来选择它们。与传统的FL系统相比,HADFL可以减轻中心服务器的通信压力,有效地利用异构计算能力,并且可以分别实现比Pytorch分布式训练方案分别的最大加速度为3.15倍,而不是Pytorch分布式训练方案,几乎没有损失收敛准确性。
translated by 谷歌翻译
联合学习(FL)是一种培训技术,使客户端设备能够通过聚合本地计算的模型来共同学习共享模型,而无需暴露其原始数据。虽然大多数现有工作侧重于提高流动模型准确性,但在本文中,我们专注于提高培训效率,这往往是采用现实世界应用的流域的障碍。具体而言,我们设计了一个有效的FL框架,该框架共同优化了模型精度,处理延迟和通信效率,所有这些都是FL实际实施的主要设计考虑因素。灵感来自近期多智能经纪增强学习(MARL)在解决复杂控制问题方面的成功,我们呈现\ TEXTIT {FEDMARL},基于MARL为基础的FL框架,它执行有效的运行时客户端选择。实验表明,Fedmarl可以显着提高模型准确性,处理延迟和通信成本要低得多。
translated by 谷歌翻译
在互联网上应用联合学习(FL)是由他们产生的大量数据卷产生和越来越多的数据隐私问题所必需的。但是,有三种挑战需要解决,以使FL高效:(i)在具有有限的计算能力的设备上执行(ii)由于设备的计算异质性而对陷阱器进行丢包,并且(iii)适应变化的网络带宽。本文提出了一个自适应卸载FL框架,以减轻前述挑战。 FEDADATT通过利用深神经网络(DNN)的层卸载到服务器来加速在计算受限设备中的本地培训。此外,FEDADATT采用基于基于学习的优化和聚类,以便自适应地识别用于服务器上的每个单独设备的DNN的哪个层,以解决计算异质性和改变网络带宽的挑战。实验研究在包括五个物理设备的基于实验室的试验台上进行。通过将DNN从设备卸载到服务器FEDADATT与经典FL相比将典型的物联网设备的训练时间减少一半。极端陷阱和整体训练时间的培训时间可以减少高达57%。此外,随着网络带宽的变化,与经典FL相比,FEDADATT将在不牺牲精度的情况下将培训时间降低至多40%。 FEDADATT可以从https://github.com/qub-blesson/fedadapt下载。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)是一种有效的分布式机器学习范式,以隐私的方式采用私人数据集。 FL的主要挑战是,END设备通常具有各种计算和通信功能,其培训数据并非独立且分布相同(非IID)。由于在移动网络中此类设备的通信带宽和不稳定的可用性,因此只能在每个回合中选择最终设备(也称为参与者或客户端的参与者或客户端)。因此,使用有效的参与者选择方案来最大程度地提高FL的性能,包括最终模型的准确性和训练时间,这一点至关重要。在本文中,我们对FL的参与者选择技术进行了评论。首先,我们介绍FL并突出参与者选择期间的主要挑战。然后,我们根据其解决方案来审查现有研究并将其分类。最后,根据我们对该主题领域最新的分析的分析,我们为FL的参与者选择提供了一些未来的指示。
translated by 谷歌翻译
作为一个有前途的分布式机器学习范式,联合学习(FL)在不影响用户隐私的情况下培训具有分散数据的中央模型,这使得其被人工智能互联网(AIT)应用程序广泛使用。然而,传统的流体遭受了模型不准确,因为它会使用数据硬标签培训本地模型,并忽略与小概率不正确的预测的有用信息。虽然各种解决方案尽量解决传统流域的瓶颈,但大多数人都引入了显着的通信和记忆开销,使大规模的AIOT设备部署成为一个巨大的挑战。为了解决上述问题,本文提出了一种基于蒸馏的新型联合学习(DFL)架构,可实现AIT应用的高效准确。灵感来自知识蒸馏(KD),可以提高模型准确性,我们的方法将KD使用的软目标添加到FL模型培训,占用可忽略不计的网络资源。在每轮本地训练之后,通过每种充气设备的局部样品预测生成软目标,并用于下一轮模型训练。在DFL的本地培训期间,软目标和硬质标签都被用作模型预测的近似目标,以通过补充软目标的知识来提高模型准确性。为了进一步提高DFL模型的性能,我们设计了一种动态调整策略,用于调整KD中使用的两个损耗功能的比率,这可以最大限度地利用软目标和硬质标签。众所周知的基准测试的全面实验结果表明,我们的方法可以显着提高独立和相同分布(IID)和非IID数据的FL的模型精度。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
Federated learning (FL) has emerged as a solution to deal with the risk of privacy leaks in machine learning training. This approach allows a variety of mobile devices to collaboratively train a machine learning model without sharing the raw on-device training data with the cloud. However, efficient edge deployment of FL is challenging because of the system/data heterogeneity and runtime variance. This paper optimizes the energy-efficiency of FL use cases while guaranteeing model convergence, by accounting for the aforementioned challenges. We propose FedGPO based on a reinforcement learning, which learns how to identify optimal global parameters (B, E, K) for each FL aggregation round adapting to the system/data heterogeneity and stochastic runtime variance. In our experiments, FedGPO improves the model convergence time by 2.4 times, and achieves 3.6 times higher energy efficiency over the baseline settings, respectively.
translated by 谷歌翻译