灵感来自生物进化,我们通过比喻与经过验证的实用进化算法(EA)进行了类比的愿景变压器的合理性,并导致它们两者都有一致的数学表示。类似于EA的动态局部人口,我们改善了现有的变压器结构,并提出了更有效的吃模型,并设计任务相关的头来处理不同的任务更灵活。此外,我们将空间填充曲线介绍到电流视觉变压器中以将图像数据序列为均匀的顺序格式。因此,我们可以设计一个统一的Eat框架来解决多模式任务,将网络架构与数据格式自适应分开。与最近的视觉变压器工作相比,我们的方法对ImageNet分类任务进行了最先进的结果,同时具有较小的参数和更高的吞吐量。我们进一步开展多模态任务,以展示统一的饮食的优越性,例如基于文本的图像检索,我们的方法在CSS数据集上的基线上通过+3.7点提高了+3.7点。
translated by 谷歌翻译