我们以封闭的形式分析了随机梯度下降(SGD)的学习动态,用于分类每个群集的高位高斯混合的单层神经网络,其中每个群集分配两个标签中的一个。该问题提供了具有内插制度的非凸损景观的原型和大的概括间隙。我们定义了一个特定的随机过程,其中SGD可以扩展到我们称呼随机梯度流的连续时间限制。在全批处理中,我们恢复标准梯度流。我们将动态平均场理论从统计物理应用于通过自成的随机过程跟踪高维极限中算法的动态。我们探讨了算法的性能,作为控制参数脱落灯的函数,它如何导航损耗横向。
translated by 谷歌翻译
随机梯度下降(SGD)是深度学习技术的工作主控算法。在训练阶段的每个步骤中,从训练数据集中抽取迷你样本,并且根据该特定示例子集的性能调整神经网络的权重。迷你批量采样过程将随机性动力学引入梯度下降,具有非琐碎的状态依赖性噪声。我们在原型神经网络模型中表征了SGD的随机和最近引入的变体持久性SGD。在占地面定的制度中,在最终训练误差是阳性的情况下,SGD动力学达到静止状态,我们从波动耗散定理定义了从动态平均场理论计算的波动定理的有效温度。我们使用有效温度来量化SGD噪声的幅度作为问题参数的函数。在过度参数化的制度中,在训练错误消失的情况下,我们通过计算系统的两个副本之间的平均距离来测量SGD的噪声幅度,并具有相同的初始化和两个不同的SGD噪声的实现。我们发现这两个噪声测量与问题参数的函数类似。此外,我们观察到嘈杂的算法导致相应的约束满足问题的更广泛的决策边界。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
当前的深度神经网络被高度参数化(多达数十亿个连接权重)和非线性。然而,它们几乎可以通过梯度下降算法的变体完美地拟合数据,并达到预测准确性的意外水平,而不会过度拟合。这些是巨大的结果,无视统计学习的预测,并对非凸优化构成概念性挑战。在本文中,我们使用来自无序系统的统计物理学的方法来分析非凸二进制二进制神经网络模型中过度参数化的计算后果,该模型对从结构上更简单但“隐藏”网络产生的数据进行了培训。随着连接权重的增加,我们遵循误差损失函数不同最小值的几何结构的变化,并将其与学习和概括性能相关联。当解决方案开始存在时,第一次过渡发生在所谓的插值点(完美拟合变得可能)。这种过渡反映了典型溶液的特性,但是它是尖锐的最小值,难以采样。差距后,发生了第二个过渡,并具有不同类型的“非典型”结构的不连续外观:重量空间的宽区域,这些区域特别是解决方案密度且具有良好的泛化特性。两种解决方案共存,典型的解决方案的呈指数数量,但是从经验上讲,我们发现有效的算法采样了非典型,稀有的算法。这表明非典型相变是学习的相关阶段。与该理论建议的可观察到的现实网络的数值测试结果与这种情况一致。
translated by 谷歌翻译
连续数据的优化问题出现在,例如强大的机器学习,功能数据分析和变分推理。这里,目标函数被给出为一个(连续)索引目标函数的系列 - 相对于概率测量集成的族聚集。这些问题通常可以通过随机优化方法解决:在随机切换指标执行关于索引目标函数的优化步骤。在这项工作中,我们研究了随机梯度下降算法的连续时间变量,以进行连续数据的优化问题。该所谓的随机梯度过程包括最小化耦合与确定索引的连续时间索引过程的索引目标函数的梯度流程。索引过程是例如,反射扩散,纯跳跃过程或紧凑空间上的其他L evy过程。因此,我们研究了用于连续数据空间的多种采样模式,并允许在算法的运行时进行模拟或流式流的数据。我们分析了随机梯度过程的近似性质,并在恒定下进行了长时间行为和遍历的学习率。我们以噪声功能数据的多项式回归问题以及物理知识的神经网络在多项式回归问题中结束了随机梯度过程的适用性。
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
建立深度学习的理论基础的一个关键挑战是神经网络的复杂优化动态,由大量网络参数之间的高维相互作用产生。这种非琐碎的动态导致有趣的行为,例如概括误差的“双重下降”的现象。这种现象的越常见的方面对应于模型 - 明智的双下降,其中测试误差具有增加模型复杂性的第二下降,超出经典的U形误差曲线。在这项工作中,我们研究了研究误差在训练时间增加时进行了测试误差的较低学习的巨头双重下降的起源。通过利用统计物理学的工具,我们研究了展示了与深神经网络中的EPOCH-WISE Double Countcle的线性师生设置。在此设置中,我们导出了封闭式的分析表达式,用于培训泛化误差的演变。我们发现双重血统可以归因于不同尺度的不同特征:作为快速学习功能过度装备,较慢的学习功能开始适合,导致测试错误的第二个下降。我们通过数字实验验证了我们的研究结果,其中我们的理论准确预测了实证发现,并与深神经网络中的观察结果保持一致。
translated by 谷歌翻译
In a series of recent theoretical works, it was shown that strongly overparameterized neural networks trained with gradient-based methods could converge exponentially fast to zero training loss, with their parameters hardly varying. In this work, we show that this "lazy training" phenomenon is not specific to overparameterized neural networks, and is due to a choice of scaling, often implicit, that makes the model behave as its linearization around the initialization, thus yielding a model equivalent to learning with positive-definite kernels. Through a theoretical analysis, we exhibit various situations where this phenomenon arises in non-convex optimization and we provide bounds on the distance between the lazy and linearized optimization paths. Our numerical experiments bring a critical note, as we observe that the performance of commonly used non-linear deep convolutional neural networks in computer vision degrades when trained in the lazy regime. This makes it unlikely that "lazy training" is behind the many successes of neural networks in difficult high dimensional tasks.
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
深度神经网络和其他现代机器学习模型的培训通常包括解决高维且受大规模数据约束的非凸优化问题。在这里,基于动量的随机优化算法在近年来变得尤其流行。随机性来自数据亚采样,从而降低了计算成本。此外,动量和随机性都应该有助于算法克服当地的最小化器,并希望在全球范围内融合。从理论上讲,这种随机性和动量的结合被糟糕地理解。在这项工作中,我们建议并分析具有动量的随机梯度下降的连续时间模型。该模型是一个分段确定的马尔可夫过程,它通过阻尼不足的动态系统和通过动力学系统的随机切换来代表粒子运动。在我们的分析中,我们研究了长期限制,子采样到无填充采样极限以及动量到非摩托车的限制。我们对随着时间的推移降低动量的情况特别感兴趣:直觉上,动量有助于在算法的初始阶段克服局部最小值,但禁止后来快速收敛到全球最小化器。在凸度的假设下,当降低随时间的动量时,我们显示了动力学系统与全局最小化器的收敛性,并让子采样率转移到无穷大。然后,我们提出了一个稳定的,合成的离散方案,以从我们的连续时间动力学系统中构造算法。在数值实验中,我们研究了我们在凸面和非凸测试问题中的离散方案。此外,我们训练卷积神经网络解决CIFAR-10图像分类问题。在这里,与动量相比,我们的算法与随机梯度下降相比达到了竞争性结果。
translated by 谷歌翻译
多级分类问题的广义线性模型是现代机器学习任务的基本构建块之一。在本手稿中,我们通过具有任何凸损耗和正规化的经验风险最小化(ERM)来描述与通用手段和协方士的k $高斯的混合。特别是,我们证明了表征ERM估计的精确渐近剂,以高维度,在文献中扩展了关于高斯混合分类的几个先前结果。我们举例说明我们在统计学习中的两个兴趣任务中的两个任务:a)与稀疏手段的混合物进行分类,我们研究了$ \ ell_2 $的$ \ ell_1 $罚款的效率; b)Max-Margin多级分类,在那里我们在$ k> 2 $的多级逻辑最大似然估计器上表征了相位过渡。最后,我们讨论了我们的理论如何超出合成数据的范围,显示在不同的情况下,高斯混合在真实数据集中密切地捕获了分类任务的学习曲线。
translated by 谷歌翻译
深度学习的概括分析通常假定训练会收敛到固定点。但是,最近的结果表明,实际上,用随机梯度下降优化的深神经网络的权重通常无限期振荡。为了减少理论和实践之间的这种差异,本文着重于神经网络的概括,其训练动力不一定会融合到固定点。我们的主要贡献是提出一个统计算法稳定性(SAS)的概念,该算法将经典算法稳定性扩展到非convergergent算法并研究其与泛化的联系。与传统的优化和学习理论观点相比,这种崇高的理论方法可导致新的见解。我们证明,学习算法的时间复杂行为的稳定性与其泛化有关,并在经验上证明了损失动力学如何为概括性能提供线索。我们的发现提供了证据表明,即使训练无限期继续并且权重也不会融合,即使训练持续进行训练,训练更好地概括”的网络也是如此。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
AutoEncoders是无监督学习中最简单的神经网络,因此是学习特色学习的理想框架。虽然最近获得了对线性自动统计器的动态的详细了解,但是通过处理具有非普通相关性的培训数据的技术难题来阻碍了对非线性自动化器的研究 - 特征提取的基本先决条件。在这里,我们研究非线性,浅层自动化器中特征学习的动态。我们派生了一组渐近的精确方程,描述了在高维输入的极限中用随机梯度下降(SGD)训练的AutoEncoders的泛化动态。这些方程揭示了AutoEncoders顺序地学习其输入的主要主体组成部分。对长时间动态的分析解释了Sigmoidal AutoEncoders与捆绑权重的失败,突出了培训Relu AutoEncoders偏差的重要性。在以前的线性网络上建立上一个结果,我们分析了Vanilla SGD算法的修改,允许学习精确的主组件。最后,我们表明我们的方程式准确地描述了非线性自动泊车的泛化动态,如CiFar10。
translated by 谷歌翻译
长期存在的辩论围绕着相关的假设,即低曲率的最小值更好地推广,而SGD则不鼓励曲率。我们提供更完整和细微的观点,以支持两者。首先,我们表明曲率通过两种新机制损害了测试性能,除了已知的参数搭配机制外,弯曲和偏置曲线除了偏置和偏置。尽管曲率不是,但对测试性能的三个曲率介导的贡献是重复的,尽管曲率不是。移位横向的变化是连接列车和测试局部最小值的线路,由于数据集采样或分布位移而差异。尽管在训练时间的转移尚不清楚,但仍可以通过最大程度地减少总体曲率来减轻横向横向。其次,我们得出了一种新的,明确的SGD稳态分布,表明SGD优化了与火车损失相关的有效潜力,并且SGD噪声介导了这种有效潜力的深层与低外生区域之间的权衡。第三,将我们的测试性能分析与SGD稳态相结合,表明,对于小的SGD噪声,移位膜可能是三种机制中最重要的。我们的实验证实了狂热对测试损失的影响,并进一步探索了SGD噪声与曲率之间的关系。
translated by 谷歌翻译
在神经网络的文献中,Hebbian学习传统上是指Hopfield模型及其概括存储原型的程序(即仅经历过一次形成突触矩阵的确定模式)。但是,机器学习中的“学习”一词是指机器从提供的数据集中提取功能的能力(例如,由这些原型的模糊示例制成),以制作自己的不可用原型的代表。在这里,给定一个示例示例,我们定义了一个有监督的学习协议,通过该协议可以通过该协议来推断原型,并检测到正确的控制参数(包括数据集的大小和质量)以描绘系统性能的相图。我们还证明,对于无结构数据集,配备了该监督学习规则的Hopfield模型等同于受限的Boltzmann机器,这表明了最佳且可解释的培训例程。最后,这种方法被推广到结构化的数据集:我们在分析的数据集中突出显示了一个准剥离组织(让人联想到复制对称性 - 对称性),因此,我们为其(部分)分开,为其(部分)删除层引入了一个附加的“复制性隐藏层”,该证明可以将MNIST分类从75%提高到95%,并提供有关深度体系结构的新观点。
translated by 谷歌翻译
机器学习模型的概括对数据,模型和学习算法具有复杂的依赖性。我们研究训练和测试性能,以及它们在不同数据集样本上的差异给出的概括差距,以理解其``典型''行为。我们得出了差距的表达式,作为模型之间协方差的函数参数分布和列车损耗以及平均测试性能的另一种表达,显示了测试概括仅取决于数据平均参数分布和数据平均损失。我们显示,对于大型模型参数分布,修改的概括差距为始终是非负的。通过进一步专门针对由随机梯度下降(SGD)产生的参数分布,以及一些近似值和建模考虑,我们能够预测有关通用差距和模型训练和测试性能如何变化为一个方面的一些方面SGD噪声的功能。我们基于RESNET体系结构对CIFAR10分类任务进行经验评估这些预测。
translated by 谷歌翻译
在这项工作中,我们探讨了随机梯度下降(SGD)训练的深神经网络的限制动态。如前所述,长时间的性能融合,网络继续通过参数空间通过一个异常扩散的过程,其中距离在具有非活动指数的梯度更新的数量中增加距离。我们揭示了优化的超公数,梯度噪声结构之间的复杂相互作用,以及在训练结束时解释这种异常扩散的Hessian矩阵。为了构建这种理解,我们首先为SGD推导出一个连续时间模型,具有有限的学习速率和批量尺寸,作为欠下的Langevin方程。我们在线性回归中研究了这个方程,我们可以为参数的相位空间动态和它们的瞬时速度来得出精确的分析表达式,从初始化到实用性。使用Fokker-Planck方程,我们表明驾驶这些动态的关键成分不是原始的训练损失,而是修改的损失的组合,其隐含地规则地规范速度和概率电流,这导致相位空间中的振荡。我们在ImageNet培训的Reset-18模型的动态中确定了这种理论的定性和定量预测。通过统计物理的镜头,我们揭示了SGD培训的深神经网络的异常限制动态的机制来源。
translated by 谷歌翻译
随机梯度下降(SGD)是现代机器学习的支柱,是各种问题的首选优化算法。尽管SGD的经验成功通常归因于其计算效率和有利的概括行为,但两者都没有充分理解和解散它们仍然是一个开放的问题。即使在简单的凸二次问题的设置中,最坏情况分析也给SGD的渐近收敛率提供了不比全批梯度下降(GD)更好的,而SGD的所谓隐式正则作用缺乏精确的解释。在这项工作中,我们研究了高维凸四边形上多通sgd的动力学,并建立了与随机微分方程的渐近等效性,我们称之为同质化的随机梯度下降(HSGD),我们的解决方案我们以我们的解决方案的方式明确表征Volterra积分方程。这些结果为学习和风险轨迹提供精确的公式,该公式揭示了隐性条件的机制,该机制解释了SGD相对于GD的效率。我们还证明,来自SGD的噪声会对泛化性能产生负面影响,排除在这种情况下任何类型的隐式正则化的可能性。最后,我们展示了如何适应HSGD形式主义以包括流媒体SGD,这使我们能够针对相对于流SGD(Bootstrap风险)的多通SGD的多余风险产生确切的预测。
translated by 谷歌翻译
我们考虑受限制的Boltzmann机器(RBMS)在非结构化的数据集上培训,由虚构的数据集进行,该数据集由明确的模糊但不可用的“原型”,我们表明,RBM可以学习原型的临界样本大小,即机器可以成功播放作为一种生成模型或作为分类器,根据操作程序。通常,评估关键的样本大小(可能与数据集的质量相关)仍然是机器学习中的一个开放问题。在这里,限制随机理论,其中浅网络就足够了,大母细胞场景是正确的,我们利用RBM和Hopfield网络之间的正式等价,以获得突出区域中突出区域的神经架构的相图控制参数(即,原型的数量,训练集的训练集的神经元数量,大小和质量的数量),其中可以实现学习。我们的调查是通过基于无序系统的统计学机械的分析方法领导的,结果通过广泛的蒙特卡罗模拟进一步证实。
translated by 谷歌翻译