如今,各种机器学习(ML)应用程序在无线网络边缘提供连续数据处理和实时数据分析。分布式ML解决方案受到资源异质性严重挑战,特别是所谓的脱柱效应。为了解决此问题,我们设计一种用于设备的新设备到设备(D2D)辅助编码联合学习方法(D2D-CFL),用于在特征隐私泄漏时跨设备负载平衡。所提出的解决方案捕获系统动态,包括数据(时间依赖学习模型,数据到达的各种强度),设备(不同的计算资源和培训数据量)和部署(各种位置和D2D图连接)。我们得出了最佳压缩速率,以实现最小处理时间并建立与收敛时间的连接。由此产生的优化问题提供了次优压缩参数,其提高了总培训时间。我们所提出的方法有利于实时协同应用,用户不断地生成培训数据。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
通过增加无线设备的计算能力,以及用户和设备生成的数据的前所未有的级别,已经出现了新的分布式机器学习(ML)方法。在无线社区中,由于其通信效率及其处理非IID数据问题的能力,联邦学习(FL)特别有趣。可以通过称为空中计算(AIRCOMP)的无线通信方法加速FL训练,其利用同时上行链路传输的干扰以有效地聚合模型更新。但是,由于Aircomp利用模拟通信,因此它引入了不可避免的估计错误。在本文中,我们研究了这种估计误差对FL的收敛性的影响,并提出了一种改进资源受限无线网络的方法的转移。首先,我们通过静态通道重新传输获得最佳Aircomp电源控制方案。然后,我们调查了传递的空中流体的性能,并在流失函数上找到两个上限。最后,我们提出了一种选择最佳重传的启发式,可以在训练ML模型之前计算。数值结果表明,引入重传可能导致ML性能提高,而不会在通信或计算方面产生额外的成本。此外,我们为我们的启发式提供了模拟结果,表明它可以正确地确定不同无线网络设置和机器学习问题的最佳重传次数。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
Federated学习(FL)作为保护分布式机器学习框架引起了很多关注,许多客户通过将模型更新与参数服务器交换而不是共享其原始数据来协作训练机器学习模型。然而,FL培训遭受了缓慢的收敛性和不稳定的性能,这是由于客户的异质计算资源引起的散乱者和沟通率的波动。本文提出了一个编码的FL框架来减轻Straggler问题,即随机编码的联合学习(SCFL)。在此框架中,每个客户端通过将附加噪声添加到其本地数据的随机线性组合中,从而生成一个隐私的编码数据集。服务器从所有客户端收集编码的数据集来构建复合数据集,这有助于补偿散布效果。在培训过程中,服务器和客户端执行迷你批次随机梯度下降(SGD),并且服务器在模型聚合中添加了一个化妆术语,以获得无偏的梯度估计。我们通过共同信息差异隐私(MI-DP)来表征隐私保证,并分析联合学习中的收敛性能。此外,我们通过分析隐私约束对收敛率的影响,证明了拟议的SCFL方法的隐私性绩效权衡。最后,数值实验证实了我们的分析,并显示了SCFL在保持数据隐私的同时实现快速收敛的好处。
translated by 谷歌翻译
在这项工作中,我们考虑了具有多个基站和间隔干扰的无线系统中的联合学习模型。在学习阶段,我们应用了一个不同的私人方案,将信息从用户传输到其相应的基站。我们通过在其最佳差距上得出上限来显示学习过程的收敛行为。此外,我们定义了一个优化问题,以减少该上限和总隐私泄漏。为了找到此问题的本地最佳解决方案,我们首先提出了一种计划资源块和用户的算法。然后,我们扩展了该方案,以通过优化差异隐私人工噪声来减少总隐私泄漏。我们将这两个程序的解决方案应用于联合学习系统的参数。在这种情况下,我们假设每个用户都配备了分类器。此外,假定通信单元的资源块比用户数量少。仿真结果表明,与随机调度程序相比,我们提出的调度程序提高了预测的平均准确性。此外,其具有噪声优化器的扩展版本大大减少了隐私泄漏的量。
translated by 谷歌翻译
本文通过匹配的追求方法开发了一类低复杂设备调度算法,以实现空中联合学习。提出的方案紧密跟踪了通过差异编程实现的接近最佳性能,并且基于凸松弛的众所周知的基准算法极大地超越了众所周知的基准算法。与最先进的方案相比,所提出的方案在系统上构成了较低的计算负载:对于$ k $设备和参数服务器上的$ n $ antennas,基准的复杂性用$ \ left缩放(n^)2 + k \ right)^3 + n^6 $,而提出的方案量表的复杂性则以$ 0 <p,q \ leq 2 $为$ k^p n^q $。通过CIFAR-10数据集上的数值实验证实了所提出的方案的效率。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
在本章中,我们将主要关注跨无线设备的协作培训。培训ML模型相当于解决优化问题,并且在过去几十年中已经开发了许多分布式优化算法。这些分布式ML算法提供数据局部性;也就是说,可以协同地培训联合模型,而每个参与设备的数据仍然是本地的数据。这个地址,一些延伸,隐私问题。它们还提供计算可扩展性,因为它们允许利用分布在许多边缘设备的计算资源。然而,在实践中,这不会直接导致整体学习速度的线性增益与设备的数量。这部分是由于通信瓶颈限制了整体计算速度。另外,无线设备在其计算能力中具有高度异构,并且它们的计算速度和通信速率都可能由于物理因素而高度变化。因此,考虑到时变通信网络的影响以及器件的异构和随机计算能力,必须仔细设计分布式学习算法,特别是在无线网络边缘实现的算法。
translated by 谷歌翻译
Communication and computation are often viewed as separate tasks. This approach is very effective from the perspective of engineering as isolated optimizations can be performed. On the other hand, there are many cases where the main interest is a function of the local information at the devices instead of the local information itself. For such scenarios, information theoretical results show that harnessing the interference in a multiple-access channel for computation, i.e., over-the-air computation (OAC), can provide a significantly higher achievable computation rate than the one with the separation of communication and computation tasks. Besides, the gap between OAC and separation in terms of computation rate increases with more participating nodes. Given this motivation, in this study, we provide a comprehensive survey on practical OAC methods. After outlining fundamentals related to OAC, we discuss the available OAC schemes with their pros and cons. We then provide an overview of the enabling mechanisms and relevant metrics to achieve reliable computation in the wireless channel. Finally, we summarize the potential applications of OAC and point out some future directions.
translated by 谷歌翻译
联合学习(FL)最近被揭示为有希望的技术,以便在网络边缘启用人工智能(AI),其中分布式移动设备在边缘服务器的协调下协同培训共享AI模型。为了显着提高FL的通信效率,通过利用无线多接入信道的叠加特性,遍布空中计算允许大量的移动设备通过利用无线多接入信道的叠加特性同时上传其本地模型。由于无线信道衰落,边缘服务器的模型聚合误差由所有设备中最弱的通道主导,导致严重的孤立问题。在本文中,我们提出了一种继电器协助的合作液计划,以有效地解决了斯塔格勒问题。特别是,我们部署了多个半双工继电器以协同协作在将本地模型更新上载到边缘服务器时的设备。空中计算的性质构成了与传统继电器通信系统中不同的系统目标和约束。此外,设计变量之间的强耦合使得这种系统具有挑战性的优化。为了解决问题,我们提出了一种基于交替优化的算法来优化收发器和中继操作,具有低复杂度。然后,我们在单个中继盒中分析模型聚合误差,并显示我们的继电器辅助方案实现比没有继电器的中继的误差较小的误差。该分析提供了对协同媒体实施中的继电器部署的关键见解。广泛的数值结果表明,与最先进的方案相比,我们的设计达到了更快的融合。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)是一种新颖的学习范式,可解决集中学习的隐私泄漏挑战。但是,在FL中,具有非独立和相同分布(非IID)特征的用户可能会恶化全局模型的性能。具体而言,由于非IID数据,全局模型受到权重差异的挑战。为了应对上述挑战,我们提出了机器学习(ML)模型(FIDDIF)的新型扩散策略,以通过非IID数据最大化FL性能。在FedDif中,用户通过D2D通信将本地模型传播给相邻用户。 FedDif使本地模型能够在参数聚合之前体验不同的分布。此外,从理论上讲,我们证明了FedDif可以规避体重差异挑战。在理论的基础上,我们提出了ML模型的沟通效率扩散策略,该策略可以决定基于拍卖理论的学习绩效和沟通成本之间的权衡。绩效评估结果表明,与非IID设置相比,FedDIF将全球模型的测试准确性提高了11%。此外,与最新方法相比
translated by 谷歌翻译
联合学习产生了重大兴趣,几乎所有作品都集中在一个“星形”拓扑上,其中节点/设备每个都连接到中央服务器。我们远离此架构,并将其通过网络维度扩展到最终设备和服务器之间存在多个节点的情况。具体而言,我们开发多级混合联合学习(MH-FL),是层内模型学习的混合,将网络视为基于多层群集的结构。 MH-FL认为集群中的节点中的拓扑结构,包括通过设备到设备(D2D)通信形成的本地网络,并假设用于联合学习的半分散式架构。它以协作/协作方式(即,使用D2D交互)在不同网络层处的设备进行编程,以在模型参数上形成本地共识,并将其与树形层次层的层之间的多级参数中继相结合。我们相对于网络拓扑(例如,光谱半径)和学习算法的参数来得出MH-F1的收敛的大界限(例如,不同簇中的D2D圆数的数量)。我们在不同的集群中获得了一系列D2D轮的政策,以保证有限的最佳差距或收敛到全局最佳。然后,我们开发一个分布式控制算法,用于MH-FL在每个集群中调整每个集群的D2D轮,以满足特定的收敛标准。我们在现实世界数据集上的实验验证了我们的分析结果,并展示了MH-FL在资源利用率指标方面的优势。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
我们提出了两种新颖的编码联合学习(FL)方案,用于减轻乐曲设备的效果。第一种方案,CodedPaddedFL,减轻了乐谱装置的效果,同时保留了传统的隐私水平。特别地,它将一次性填充与梯度码相结合,以产生对讨论设备的弹性。要将一次性填充应用于真实数据,我们的计划利用数据的定点算术表示。对于具有25个设备的场景,CodedPaddedFL与传统FL相比,CodedPaddedFL分别在MM师和时尚-MNIST数据集中获得6.6和9.2的速度增速因子为6.6和9.2。此外,与Prakash \ Emph {等人}最近提出的方案相比,它在延迟方面产生了类似的性能。没有额外的私人数据泄漏的缺点。第二个方案CodedSecagg提供落后和防止模型反转攻击的稳健性,并基于Shamir的秘密共享。 CodedSecagg优先于最先进的安全聚合方案,如6.6-14.6的加速因子,这取决于拼写设备的数量,在具有120个设备的场景的MNIST数据集上,以牺牲与CodedPaddedFL相比,延迟增加了30 \%。
translated by 谷歌翻译