深度学习(DL)模型的功能可以通过模型提取被盗,其中攻击者通过利用原始模型的预测API来获得替代模型。在这项工作中,我们提出了一种称为Dynamarks的新型水印技术,以保护DL模型的知识产权(IP)免受黑箱设置中的模型提取攻击。与现有方法不同,Dynamarks不会改变原始模型的训练过程,而是通过基于推理运行时的某些秘密参数从原始模型预测API中动态更改输出响应来将水印嵌入替代模型中。时尚MNIST,CIFAR-10和Imagenet数据集的实验结果证明了Dynamarks方案对水印替代模型的功效,同时保留了部署在边缘设备中的原始模型的准确性。此外,我们还执行实验,以评估Dynamarks对各种水印策略的鲁棒性,从而使DL模型所有者可以可靠地证明模型所有权。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
机器学习(ML)模型应用于越来越多的域。大量数据和计算资源的可用性鼓励开发更复杂和有价值的模型。这些模型被认为是培训他们的合法缔约方的知识产权,这使得他们防止窃取,非法再分配和未经授权的应用迫切需要。数字水印为标记模型所有权提供了强大的机制,从而提供了对这些威胁的保护。这项工作介绍了ML模型的不同类别水印方案的分类识别和分析。它介绍了一个统一的威胁模型,以允许在不同场景中进行水印方法的有效性的结构化推理和比较。此外,它系统化了期望的安全要求和攻击ML模型水印。根据该框架,调查了该领域的代表文学以说明分类法。最后,讨论了现有方法的缺点和普遍局限性,给出了未来研究方向的前景。
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
Existing integrity verification approaches for deep models are designed for private verification (i.e., assuming the service provider is honest, with white-box access to model parameters). However, private verification approaches do not allow model users to verify the model at run-time. Instead, they must trust the service provider, who may tamper with the verification results. In contrast, a public verification approach that considers the possibility of dishonest service providers can benefit a wider range of users. In this paper, we propose PublicCheck, a practical public integrity verification solution for services of run-time deep models. PublicCheck considers dishonest service providers, and overcomes public verification challenges of being lightweight, providing anti-counterfeiting protection, and having fingerprinting samples that appear smooth. To capture and fingerprint the inherent prediction behaviors of a run-time model, PublicCheck generates smoothly transformed and augmented encysted samples that are enclosed around the model's decision boundary while ensuring that the verification queries are indistinguishable from normal queries. PublicCheck is also applicable when knowledge of the target model is limited (e.g., with no knowledge of gradients or model parameters). A thorough evaluation of PublicCheck demonstrates the strong capability for model integrity breach detection (100% detection accuracy with less than 10 black-box API queries) against various model integrity attacks and model compression attacks. PublicCheck also demonstrates the smooth appearance, feasibility, and efficiency of generating a plethora of encysted samples for fingerprinting.
translated by 谷歌翻译
深度神经网络(DNN)的最新进步已经看到多个安全敏感域中的广泛部署。需要资源密集型培训和使用有价值的域特定培训数据,使这些模型成为模型所有者的顶级知识产权(IP)。 DNN隐私的主要威胁之一是模型提取攻击,前提是在DNN模型中试图窃取敏感信息。最近的研究表明,基于硬件的侧信道攻击可以揭示关于DNN模型的内部知识(例如,模型架构)但到目前为止,现有攻击不能提取详细的模型参数(例如,权重/偏置)。在这项工作中,我们首次提出了一种先进的模型提取攻击框架,借助记忆侧通道攻击有效地窃取了DNN权重。我们建议的深度包括两个关键阶段。首先,我们通过采用基于Rowhammer的硬件故障技术作为信息泄漏向量,开发一种名为HammerLeak的新重量位信息提取方法。 Hammerleak利用了用于DNN应用的几种新的系统级技术,以实现快速高效的重量窃取。其次,我们提出了一种具有平均聚类重量惩罚的新型替代模型训练算法,其利用部分泄漏的位信息有效地利用了目标受害者模型的替代原型。我们在三个流行的图像数据集(例如,CiFar-10/100 / GTSRB)和四个DNN架构上评估该替代模型提取方法(例如,Reset-18/34 / Wide-Reset / Vgg-11)。提取的替代模型在CiFar-10数据集的深度剩余网络上成功实现了超过90%的测试精度。此外,我们提取的替代模型也可能产生有效的对抗性输入样本来欺骗受害者模型。
translated by 谷歌翻译
近年来,在自学学习(SSL)方面取得了重大成功,这有助于各种下游任务。但是,攻击者可能会窃取此类SSL模型并将其商业化以获利,这对于保护其知识产权(IP)至关重要。大多数现有的IP保护解决方案都是为监督学习模型而设计的,不能直接使用,因为它们要求模型的下游任务和目标标签在水印嵌入过程中已知并获得,这在SSL的域中并非总是可以的。为了解决此类问题,尤其是在水印嵌入过程中下游任务多样化且未知时,我们提出了一种新型的黑盒水印解决方案,名为SSL-WM,以保护SSL模型的所有权。 SSL-WM将水印编码器的水印输入映射到不变的表示空间中,该空间会导致任何下游分类器产生预期的行为,从而允许检测到嵌入式水印。我们使用不同的SSL模型(包括基于对比度和基于生成的生成型)来评估许多任务,例如计算机视觉(CV)和自然语言处理(NLP)等许多任务。实验结果表明,SSL-WM可以有效地验证各种下游任务中被盗SSL模型的所有权。此外,SSL-WM对模型进行微调和修剪攻击非常强大。最后,SSL-WM还可以从评估的水印检测方法中逃避检测,从而证明了其在保护SSL模型IP时的有希望的应用。
translated by 谷歌翻译
自我监督学习是一种新兴的机器学习(ML)范式。与监督的学习相比,哪些利用高质量标记的数据集以实现良好的性能相比,自我监督的学习依赖于未标记的数据集来预先培训功能强大的编码器,然后可以将其视为各种下游任务的功能提取器。大量的数据和计算资源消耗使编码器本身成为模型所有者的宝贵知识产权。最近的研究表明,ML模型的版权受到模型窃取攻击的威胁,该攻击旨在训练替代模型以模仿给定模型的行为。我们从经验上表明,预训练的编码器极易受到模型窃取攻击的影响。但是,版权保护算法(例如水印)的大多数努力集中在分类器上。同时,预先培训的编码器版权保护的内在挑战在很大程度上仍然没有研究。我们通过提出SSLGuard,这是第一种用于预训练的编码器的水印算法。鉴于干净的预训练编码器,SSLGuard向其中注入了水印,并输出了水印版本。还采用了阴影训练技术来保留潜在模型窃取攻击下的水印。我们广泛的评估表明,SSLGuard在水印注入和验证方面有效,并且可以防止模型窃取和其他水印去除攻击,例如输入噪声,输出扰动,覆盖,覆盖,模型修剪和微调。
translated by 谷歌翻译
在模型提取攻击中,对手可以通过反复查询并根据获得的预测来窃取通过公共API暴露的机器学习模型。为了防止模型窃取,现有的防御措施专注于检测恶意查询,截断或扭曲输出,因此必然会为合法用户引入鲁棒性和模型实用程序之间的权衡。取而代之的是,我们建议通过要求用户在阅读模型的预测之前完成工作证明来阻碍模型提取。这可以通过大大增加(甚至高达100倍)来阻止攻击者,以利用查询访问模型提取所需的计算工作。由于我们校准完成每个查询的工作证明所需的努力,因此这仅为常规用户(最多2倍)引入一个轻微的开销。为了实现这一目标,我们的校准应用了来自差异隐私的工具来衡量查询揭示的信息。我们的方法不需要对受害者模型进行任何修改,可以通过机器学习从业人员来应用其公开暴露的模型免于轻易被盗。
translated by 谷歌翻译
深度神经网络(DNNS)已经在许多应用领域取得了巨大的成功,并为我们的社会带来了深刻的变化。但是,它也引发了新的安全问题,其中如何保护DNN的知识产权(IP)免受侵权的侵权是最重要但最具挑战性的主题之一。为了解决这个问题,最近的研究通过应用数字水印来关注DNN的IP保护,该水印将通过直接或间接调整网络参数将源信息和/或身份验证数据嵌入DNN模型中。但是,调整网络参数不可避免地会扭曲DNN,因此无疑会损害DNN模型在其最初任务上的性能,而不管性能降解的程度如何。它激发了本文中的作者提出一种称为\ emph {汇总会员推理(PMI)}的新技术,以保护DNN模型的IP。提出的PMI既没有改变给定DNN模型的网络参数,也没有用一系列精心制作的触发样品来微调DNN模型。取而代之的是,它使原始的DNN模型保持不变,但是可以通过推断出多个迷你数据集中的哪个迷你数据箱来确定DNN模型的所有权。实践。实验还证明了这项工作的优势和适用性。
translated by 谷歌翻译
Transforming off-the-shelf deep neural network (DNN) models into dynamic multi-exit architectures can achieve inference and transmission efficiency by fragmenting and distributing a large DNN model in edge computing scenarios (e.g., edge devices and cloud servers). In this paper, we propose a novel backdoor attack specifically on the dynamic multi-exit DNN models. Particularly, we inject a backdoor by poisoning one DNN model's shallow hidden layers targeting not this vanilla DNN model but only its dynamically deployed multi-exit architectures. Our backdoored vanilla model behaves normally on performance and cannot be activated even with the correct trigger. However, the backdoor will be activated when the victims acquire this model and transform it into a dynamic multi-exit architecture at their deployment. We conduct extensive experiments to prove the effectiveness of our attack on three structures (ResNet-56, VGG-16, and MobileNet) with four datasets (CIFAR-10, SVHN, GTSRB, and Tiny-ImageNet) and our backdoor is stealthy to evade multiple state-of-the-art backdoor detection or removal methods.
translated by 谷歌翻译
联合学习模型是根据多方拥有的宝贵培训数据进行协作开发的。在联合模型的开发和部署过程中,它们会面临风险,包括非法复制,重新分配,滥用和/或自由骑行。为了解决这些风险,联合学习模型的所有权验证是保护联合学习模型知识产权(IPR)(即Fedipr)的先决条件。我们提出了一种新颖的联邦深神经网络(FedDNN)所有权验证计划,该计划允许将专用水印嵌入并进行验证,以声称是FedDNN模型的合法IPR。在拟议的计划中,每个客户都独立验证了模型水印的存在,并索赔联合模型的所有权,而没有透露私人培训数据也没有私人水印信息。从理论上讲,嵌入式水印的有效性是通过对多个客户私下嵌入并检测到的水印的严格分析来证明的。此外,关于计算机视觉和自然语言处理任务的广泛实验结果表明,可以嵌入并可靠地检测到不同的位水印,而不会损害原始模型性能。我们的水印方案还具有各种联合训练环境的弹性,并防止拆除攻击。
translated by 谷歌翻译
Recent increases in the computational demands of deep neural networks (DNNs) have sparked interest in efficient deep learning mechanisms, e.g., quantization or pruning. These mechanisms enable the construction of a small, efficient version of commercial-scale models with comparable accuracy, accelerating their deployment to resource-constrained devices. In this paper, we study the security considerations of publishing on-device variants of large-scale models. We first show that an adversary can exploit on-device models to make attacking the large models easier. In evaluations across 19 DNNs, by exploiting the published on-device models as a transfer prior, the adversarial vulnerability of the original commercial-scale models increases by up to 100x. We then show that the vulnerability increases as the similarity between a full-scale and its efficient model increase. Based on the insights, we propose a defense, $similarity$-$unpairing$, that fine-tunes on-device models with the objective of reducing the similarity. We evaluated our defense on all the 19 DNNs and found that it reduces the transferability up to 90% and the number of queries required by a factor of 10-100x. Our results suggest that further research is needed on the security (or even privacy) threats caused by publishing those efficient siblings.
translated by 谷歌翻译
随着自然语言处理(NLP)技术的快速发展,NLP模型在业务中表现出巨大的经济价值。但是,所有者的模型容易受到盗版再分配的威胁,这打破了模型所有者与消费者之间的对称关系。因此,需要一种模型保护机制来防止对称性被打破。当前,基于黑框验证的语言模型保护方案在触发样品的隐形方面的性能较差,这些触发样品很容易被人类或异常检测器检测到,从而防止验证。为了解决此问题,本文提出了无触发模式的触发样本,以进行所有权验证。此外,小偷可能会替换以水印模型来满足其特定分类任务并删除模型中存在的水印的分类模块。因此,本文进一步提出了一个新的威胁,以替换模型分类模块并对模型进行全局微调,并通过白色框方法成功验证模型所有权。同时,我们使用区块链的特性,例如防篡改和可追溯性,以防止盗贼的所有权声明。实验表明,所提出的方案成功地验证了100%水印验证精度的所有权,而不会影响模型的原始性能,并且具有强大的鲁棒性和低的虚假触发率。
translated by 谷歌翻译
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by leveraging the difficulty in interpretability of the learned model to misclassify any inputs signed with the attacker's chosen trojan trigger. Since the trojan trigger is a secret guarded and exploited by the attacker, detecting such trojan inputs is a challenge, especially at run-time when models are in active operation. This work builds STRong Intentional Perturbation (STRIP) based run-time trojan attack detection system and focuses on vision system. We intentionally perturb the incoming input, for instance by superimposing various image patterns, and observe the randomness of predicted classes for perturbed inputs from a given deployed model-malicious or benign. A low entropy in predicted classes violates the input-dependence property of a benign model and implies the presence of a malicious input-a characteristic of a trojaned input. The high efficacy of our method is validated through case studies on three popular and contrasting datasets: MNIST, CIFAR10 and GTSRB. We achieve an overall false acceptance rate (FAR) of less than 1%, given a preset false rejection rate (FRR) of 1%, for different types of triggers. Using CIFAR10 and GTSRB, we have empirically achieved result of 0% for both FRR and FAR. We have also evaluated STRIP robustness against a number of trojan attack variants and adaptive attacks.
translated by 谷歌翻译
转移学习已成为解决培训数据稀缺性的常见解决方案。它通过重复或微调训练有素的教师模型的早期层来训练特定的学生模型,该模型通常是公开可用的。但是,除了公用事业的改进外,转移的公共知识还为建模机密性带来了潜在的威胁,甚至进一步提出了其他安全和隐私问题。在本文中,我们介绍了转移学习环境中教师模型敞口威胁的首次全面调查,旨在更深入地了解公共知识和模型机密性之间的紧张关系。为此,我们提出了一种教师模型指纹攻击,以推断学生模型的起源,即它从中转移的教师模型。具体而言,我们提出了一种基于优化的新方法,以仔细生成查询以探测学生模型以实现我们的攻击。与现有的模型逆向工程方法不同,我们提出的指纹识别方法不依赖于细粒的模型输出,例如,后代和模型体系结构或培训数据集的辅助信息。我们系统地评估拟议攻击的有效性。经验结果表明,我们的攻击可以通过很少的查询准确地识别模型来源。此外,我们表明拟议的攻击可以作为垫脚石,以促进针对机器学习模型的其他攻击,例如窃取模型。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
在解决复杂的现实世界任务方面的最新深度学习(DL)进步导致其在实际应用中广泛采用。但是,这个机会具有重大的潜在风险,因为这些模型中的许多模型都依赖于对各种应用程序进行培训的隐私敏感数据,这使它们成为侵犯隐私的过度暴露威胁表面。此外,基于云的机器学习-AS-A-Service(MLAAS)在其强大的基础架构支持方面的广泛使用扩大了威胁表面,以包括各种远程侧渠道攻击。在本文中,我们首先在DL实现中识别并报告了一个新颖的数据依赖性计时侧通道泄漏(称为类泄漏),该实现源自广泛使用的DL Framework Pytorch中的非恒定时间分支操作。我们进一步展示了一个实用的推理时间攻击,其中具有用户特权和硬标签黑盒访问MLAA的对手可以利用类泄漏来损害MLAAS用户的隐私。 DL模型容易受到会员推理攻击(MIA)的攻击,其中对手的目标是推断在训练模型时是否使用过任何特定数据。在本文中,作为一个单独的案例研究,我们证明了具有差异隐私保护的DL模型(对MIA的流行对策)仍然容易受到MIA的影响,而不是针对对手开发的漏洞泄漏。我们通过进行恒定的分支操作来减轻班级泄漏并有助于减轻MIA,从而开发出易于实施的对策。我们选择了两个标准基准图像分类数据集CIFAR-10和CIFAR-100来训练五个最先进的预训练的DL模型,这是在具有Intel Xeon和Intel Xeon和Intel I7处理器的两个不同的计算环境中,以验证我们的方法。
translated by 谷歌翻译
已知深度学习系统容易受到对抗例子的影响。特别是,基于查询的黑框攻击不需要深入学习模型的知识,而可以通过提交查询和检查收益来计算网络上的对抗示例。最近的工作在很大程度上提高了这些攻击的效率,证明了它们在当今的ML-AS-A-Service平台上的实用性。我们提出了Blacklight,这是针对基于查询的黑盒对抗攻击的新防御。推动我们设计的基本见解是,为了计算对抗性示例,这些攻击在网络上进行了迭代优化,从而在输入空间中产生了非常相似的图像查询。 Blacklight使用在概率内容指纹上运行的有效相似性引擎来检测高度相似的查询来检测基于查询的黑盒攻击。我们根据各种模型和图像分类任务对八次最先进的攻击进行评估。 Blacklight通常只有几次查询后,都可以识别所有这些。通过拒绝所有检测到的查询,即使攻击者在帐户禁令或查询拒绝之后持续提交查询,Blacklight也可以防止任何攻击完成。 Blacklight在几个强大的对策中也很强大,包括最佳的黑盒攻击,该攻击近似于效率的白色框攻击。最后,我们说明了黑光如何推广到其他域,例如文本分类。
translated by 谷歌翻译