最近,通过单一或多个表示提出了许多方法,以提高点云语义分割的性能。但是,这些作品在性能,效率和记忆消耗中没有保持良好的平衡。为了解决这些问题,我们提出了Drinet ++,通过增强点云的点云与Voxel-Point原理来扩展Drinet。为了提高效率和性能,Drinet ++主要由两个模块组成:稀疏功能编码器和稀疏几何功能增强。稀疏特征编码器提取每个点的本地上下文信息,稀疏几何特征增强功能通过多尺度稀疏投影和细心的多尺度融合增强了稀疏点云​​的几何特性。此外,我们提出了在培训阶段的深度稀疏监督,以帮助收敛并减轻内存消耗问题。我们的Drinet ++在Semantickitti和Nuscenes数据集中实现了最先进的户外点云分段,同时运行得更快,更耗费较少的内存。
translated by 谷歌翻译
随着相机和激光雷达传感器捕获用于自主驾驶的互补信息,已经做出了巨大的努力,通过多模式数据融合来开发语义分割算法。但是,基于融合的方法需要配对的数据,即具有严格的点对像素映射的激光点云和相机图像,因为培训和推理的输入都严重阻碍了在实际情况下的应用。因此,在这项工作中,我们建议通过充分利用具有丰富外观的2D图像来提高对点云上的代表性学习的2D先验辅助语义分割(2DPass),以增强对点云的表示。实际上,通过利用辅助模态融合和多尺度融合到单个知识蒸馏(MSFSKD),2DAPS从多模式数据中获取更丰富的语义和结构信息,然后在线蒸馏到纯3D网络。结果,配备了2DAPS,我们的基线仅使用点云输入显示出显着的改进。具体而言,它在两个大规模的基准(即Semantickitti和Nuscenes)上实现了最先进的方法,其中包括TOP-1的semantickitti的单扫描和多次扫描竞赛。
translated by 谷歌翻译
准确而快速的场景理解是自动驾驶的挑战性任务之一,它需要充分利用LiDar Point云进行语义细分。在本文中,我们提出了一个\ textbf {concise}和\ textbf {有效}基于图像的语义分割网络,名为\ textbf {cenet}。为了提高学习能力的描述能力并降低计算和时间复杂性,我们的CENET将卷积与较大的内核大小而不是MLP相结合。定量和定性实验是根据公开可用的基准测试和Semanticposs进行的,这表明我们的管道与最先进的模型相比,我们的管道取得了更好的MIOU和推理性能。该代码将在https://github.com/huixiancheng/cenet上找到。
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
有效处理3D数据一直是一个挑战。大规模点云上的空间操作以稀疏数据存储,需要额外的成本。由于变形金刚的成功吸引,研究人员正在使用多头关注视力任务。但是,变压器中的注意力计算在输入数量和点云等集合的空间直觉中具有二次复杂性。我们重新设计了这项工作中的“变压器”,并将它们纳入形状分类以及部分和场景细分的层次结构框架中。我们建议我们的当地注意力单元,该单元捕获了空间社区的特征。我们还通过利用每次迭代的采样和分组来计算有效且动态的全局交叉注意。最后,为了减轻点云的非异质性,我们提出了一个有效的多尺度令牌化(MST),该标记(MST)提取了尺度不变的令牌以供注意操作。所提出的分层模型以平均准确性实现最新的形状分类,并以先前的分割方法的相同,同时需要更少的计算。我们提出的体系结构预测分割标签的标签约为以前最有效方法的延迟和参数计数的一半,具有可比的性能。该代码可从https://github.com/yigewang-whu/cloudattention获得。
translated by 谷歌翻译
Self-driving cars need to understand 3D scenes efficiently and accurately in order to drive safely. Given the limited hardware resources, existing 3D perception models are not able to recognize small instances (e.g., pedestrians, cyclists) very well due to the low-resolution voxelization and aggressive downsampling. To this end, we propose Sparse Point-Voxel Convolution (SPVConv), a lightweight 3D module that equips the vanilla Sparse Convolution with the high-resolution point-based branch. With negligible overhead, this point-based branch is able to preserve the fine details even from large outdoor scenes. To explore the spectrum of efficient 3D models, we first define a flexible architecture design space based on SPVConv, and we then present 3D Neural Architecture Search (3D-NAS) to search the optimal network architecture over this diverse design space efficiently and effectively. Experimental results validate that the resulting SPVNAS model is fast and accurate: it outperforms the state-of-the-art MinkowskiNet by 3.3%, ranking 1 st on the competitive SemanticKITTI leaderboard upon publication. It also achieves 8× computation reduction and 3× measured speedup over MinkowskiNet still with higher accuracy. Finally, we transfer our method to 3D object detection, and it achieves consistent improvements over the one-stage detection baseline on KITTI.
translated by 谷歌翻译
在本文中,我们提出了一个全面的点云语义分割网络,该网络汇总了本地和全球多尺度信息。首先,我们提出一个角度相关点卷积(ACPCONV)模块,以有效地了解点的局部形状。其次,基于ACPCONV,我们引入了局部多规模拆分(MSS)块,该块从一个单个块中连接到一个单个块中的特征,并逐渐扩大了接受场,这对利用本地上下文是有益的。第三,受HRNET的启发,在2D图像视觉任务上具有出色的性能,我们构建了一个针对Point Cloud的HRNET,以学习全局多尺度上下文。最后,我们介绍了一种融合多分辨率预测并进一步改善点云语义分割性能的点上的注意融合方法。我们在几个基准数据集上的实验结果和消融表明,与现有方法相比,我们提出的方法有效,能够实现最先进的性能。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译
大规模发光点云的快速有效语义分割是自主驾驶中的一个基本问题。为了实现这一目标,现有的基于点的方法主要选择采用随机抽样策略来处理大规模点云。但是,我们的数量和定性研究发现,随机抽样可能不适合自主驾驶场景,因为LiDAR点遵循整个空间的不均匀甚至长尾巴分布,这阻止了模型从从中捕获足够的信息,从而从中捕获了足够的信息不同的距离范围并降低了模型的学习能力。为了减轻这个问题,我们提出了一种新的极性缸平衡的随机抽样方法,该方法使下采样的点云能够保持更平衡的分布并改善不同空间分布下的分割性能。此外,引入了采样一致性损失,以进一步提高分割性能并降低模型在不同采样方法下的方差。广泛的实验证实,我们的方法在Semantickitti和Semanticposs基准测试中都产生了出色的性能,分别提高了2.8%和4.0%。
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
许多基于点的语义分割方法是为室内场景设计的,但如果它们被应用于户外环境中的LIDAR传感器捕获的点云,则他们挣扎。为了使这些方法更有效和坚固,使得它们可以处理LIDAR数据,我们介绍了重新建立基于3D点的操作的一般概念,使得它们可以在投影空间中运行。虽然我们通过三个基于点的方法显示了重新计算的版本速度快300到400倍,但实现了更高的准确性,但我们还证明了重新制定基于3D点的操作的概念允许设计统一益处的新架构基于点和基于图像的方法。作为示例,我们介绍一种网络,该网络将基于重新的3D点的操作集成到2D编码器 - 解码器架构中,该架构融合来自不同2D尺度的信息。我们评估了四个具有挑战性的语义LIDAR点云分割的方法,并显示利用基于2D图像的操作的重新推出的基于3D点的操作实现了所有四个数据集的非常好的结果。
translated by 谷歌翻译
点云的Panoptic分割是一种重要的任务,使自动车辆能够使用高精度可靠的激光雷达传感器来理解其附近。现有的自上而下方法通过将独立的任务特定网络或转换方法从图像域转换为忽略激光雷达数据的复杂性,因此通常会导致次优性性能来解决这个问题。在本文中,我们提出了新的自上而下的高效激光乐光线分割(有效的LID)架构,该架构解决了分段激光雷达云中的多种挑战,包括距离依赖性稀疏性,严重的闭塞,大规模变化和重新投影误差。高效地板包括一种新型共享骨干,可以通过加强的几何变换建模容量进行编码,并聚合语义丰富的范围感知多尺度特征。它结合了新的不变语义和实例分段头以及由我们提出的Panoptic外围损耗功能监督的Panoptic Fusion模块。此外,我们制定了正则化的伪标签框架,通过对未标记数据的培训进行进一步提高高效性的性能。我们在两个大型LIDAR数据集中建议模型基准:NUSCENES,我们还提供了地面真相注释和Semantickitti。值得注意的是,高效地将在两个数据集上设置新的最先进状态。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
我们提出了一种新的注意机制,称为全球分层注意(GHA),用于3D点云分析。 GHA通过在多个层次结构上进行一系列粗化和插值操作,近似于常规的全局点产生关注。 GHA的优势是两个方面。首先,它相对于点数具有线性复杂性,从而使大点云的处理能够处理。其次,GHA固有地具有归纳性偏见,可以专注于空间接近点,同时保留所有点之间的全球连通性。与前馈网络相结合,可以将GHA插入许多现有的网络体系结构中。我们尝试多个基线网络,并表明添加GHA始终如一地提高不同任务和数据集的性能。对于语义分割的任务,GHA在扫描板上的Minkowskiengine基线增加了1.7%的MIOU。对于3D对象检测任务,GHA将CenterPoint基线提高了Nuscenes数据集上的 +0.5%地图,而3DETR基线将SCANNET上的基线提高到 +2.1%MAP25和 +1.5%MAP50。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
LIDAR数据的实时语义分割对于自动驾驶车辆至关重要,这通常配备有嵌入式平台并具有有限的计算资源。直接在点云上运行的方法使用复杂的空间聚合操作,这非常昂贵,难以优化嵌入式平台。因此,它们不适用于嵌入式系统的实时应用。作为替代方案,基于投影的方法更有效并且可以在嵌入式平台上运行。然而,目前基于最先进的投影的方法不会达到与基于点的方法相同的准确性并使用数百万个参数。因此,我们提出了一种基于投影的方法,称为多尺度交互网络(Minet),这是非常有效和准确的。该网络使用具有不同尺度的多个路径并余额尺度之间的计算资源。尺度之间的额外密集相互作用避免了冗余计算并使网络高效。在准确度,参数数量和运行时,所提出的网络以基于点为基础的基于图像和基于投影的方法。此外,网络处理在嵌入式平台上每秒超过24个扫描,该嵌入式平台高于激光雷达传感器的帧。因此,网络适用于自动车辆。
translated by 谷歌翻译
基于激光雷达的3D场景感知是自动驾驶的基本和重要任务。大多数基于激光雷达的3D识别任务的最新方法都集中在单帧3D点云数据上,并且这些方法在这些方法中被忽略。我们认为,整个框架的时间信息为3D场景感知提供了重要的知识,尤其是在驾驶场景中。在本文中,我们专注于空间和时间变化,以更好地探索3D帧的时间信息。我们设计了一个时间变化 - 意识到的插值模块和时间体素点炼油厂,以捕获4D点云中的时间变化。时间变化 - 意识插值通过捕获空间连贯性和时间变化信息来生成从上一个和当前帧的局部特征。时间体素点炼油厂在3D点云序列上构建了时间图,并使用图形卷积模块捕获时间变化。时间体素点炼油厂还将粗素级预测转换为精细的点级预测。通过我们提出的模块,新的网络TVSN在Semantickitti和Semantiposs上实现了最先进的性能。具体而言,我们的方法在MIOU中达到52.5 \%(以前的最佳方法+5.5%)在Semantickitti的多个扫描细分任务上,semanticposs的多个扫描分段任务(63.0%)(以前的最佳方法+2.8%)。
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译