时间序列预测在许多现实世界中都起着重要的作用,例如设备生命周期预测,天气预报和交通流量预测。从最近的研究中可以看出,各种基于变压器的模型在预测时间序列中显示出了显着的结果。但是,仍然有一些问题限制了在时间序列预测任务上基于变压器的模型的能力:(i)直接在原始数据上学习由于其复杂且不稳定的功能表示,因此对噪声易受噪声; (ii)自我发挥的机制不足以对变化的特征和时间依赖性的关注不足。为了解决这两个问题,我们提出了一个基于变压器的差异重构注意模型Draformer。具体而言,Draformer具有以下创新:(i)对差异序列进行学习,该序列通过差异和突出序列的变化属性来保留清晰和稳定的序列特征; (ii)重建的注意力:综合距离注意力通过可学习的高斯内核表现出顺序距离,分布式差异注意通过将差异序列映射到适应性特征空间来计算分布差异,并且两者的组合有效地集中在具有显着关联的序列上; (iii)重建的解码器输入,该输入通过集成变异信息和时间相关来提取序列特征,从而获得了更全面的序列表示。在四个大型数据集上进行的广泛实验表明,Draformer的表现优于最先进的基线。
translated by 谷歌翻译
僵尸网络使用域生成算法(DGA)来构建C&C服务器和机器人之间的隐身命令和控制(C&C)通信通道。DGA可以定期生成大量的伪随机算法生成的域(AGD)。AGD检测算法为现有的DGA技术提供了一种轻巧,有希望的解决方案。在本文中,提出了用于AGD检测的GCNN(封闭式卷积神经网络)-LSTM(长期记忆)混合神经网络(GLHNN)。在GLHNN中,GCNN用于从LSTM顶部的域名中提取信息性特征,从而进一步处理特征序列。GLHNN使用覆盖六类DGA的代表性AGD对GLHNN进行了实验验证。将GLHNN与最先进的检测模型进行了比较,并证明了这些测试模型中最佳的总体检测性能。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
在逻辑合成阶段,需要将合成工具中的结构转换组合为优化序列,并在电路上作用以满足指定的电路区域和延迟。但是,逻辑合成优化序列是耗时的运行时间,并预测结果(QOR)与电路的合成优化序列的质量(QOR)可以帮助工程师更快地找到更好的优化序列。在这项工作中,我们提出了一种深度学习方法,以预测看不见的电路优化序列对的QOR。具体而言,结构转换通过嵌入方法和高级自然语言处理(NLP)技术(变压器)转换为向量,以提取优化序列的特征。此外,为了使模型的预测过程从电路到电路进行推广,电路的图表示为邻接矩阵和特征矩阵。图神经网络(GNN)用于提取电路的结构特征。对于此问题,使用了变压器和三个典型的GNN。此外,变压器和GNN被用作未见电路优化序列的QOR预测的联合学习政策。由变压器和GNN组合产生的方法基准测试。实验结果表明,变压器和图形的联合学习可获得最佳结果。预测结果的平均绝对误差(MAE)为0.412。
translated by 谷歌翻译
延长预测时间是对真实应用的危急需求,例如极端天气预警和长期能源消耗规划。本文研究了时间序列的长期预测问题。基于现有的变压器的模型采用各种自我关注机制来发现远程依赖性。然而,长期未来的复杂时间模式禁止模型找到可靠的依赖项。此外,变压器必须采用长期级效率的稀疏版本的点明显自我关注,从而导致信息利用瓶颈。超越变形金刚,我们将自动运气设计为具有自动相关机制的新型分解架构。我们突破了序列分解的预处理公约,并将其翻新为深层模型的基本内部。这种设计为复杂的时间序列具有渐进式分解容量的自动成形。此外,由随机过程理论的启发,我们基于串联周期性设计自相关机制,这在子系列级别进行了依赖关系发现和表示聚合。自动相关性效率和准确性的自我关注。在长期预测中,自动成形器产生最先进的准确性,六个基准测试中的相对改善38%,涵盖了五种实际应用:能源,交通,经济,天气和疾病。此存储库中可用的代码:\ url {https://github.com/thuml/autoformer}。
translated by 谷歌翻译
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
由一维卷积神经网络(1D-CNN)和长短期存储器(LSTM)网络组成的架构,该架构被提出为CNNSLSTM,用于在此中进行每小时降雨 - 径流模型学习。在CNNSLTSM中,CNN分量在长时间接收小时气象时间序列数据,然后LSTM组件从1D-CNN和小时气象时间序列数据接收提取的特征以进行短期持续时间。以案例研究为例,CNNSLSTM在日本伊希卡里河流域的每小时降雨径流建模。气象数据集由沉淀,空气温度,蒸发散,和长波辐射组成,用作输入,河流流量用作目标数据。为了评估所提出的CNNSLSTM的性能,将CNNSLSTM的结果与1D-CNN,LSTM的结果进行比较,仅用每小时输入(LSTMWHOUT),1D-CNN和LSTM(CNNPLSTM)的并行架构,以及使用每日的LSTM架构每小时输入数据(LSTMWDPH)。与三个传统架构(1D-CNN,LSTMWHOUL和CNNPLSTM)相比,CNNSLSTM对估计准确度明显改进,最近提出了LSTMWDPH。与观察到的流动相比,测试时段的NSE值的中值为0.455-0.469,用于1d-CNN(基于NCHF = 8,16和32,第一层的特征图的信道的数量CNN),用于CNNPLSTM的0.639-0.656(基于NCHF = 8,16和32),LSTMWHOUR的0.745,LSTMWDPH的0.831,CNNSLSTM为0.865-0.873(基于NCHF = 8,16和32)。此外,所提出的CNNSLSTM将1D-CNN的中值降低50.2%-51.4%,CNPLSTM在37.4%-40.8%,LSTMWHOUR,达27.3%-29.5%,LSTMWDPH为10.6%-13.4%。
translated by 谷歌翻译
尽管基于变压器的方法已显着改善了长期序列预测的最新结果,但它们不仅在计算上昂贵,而且更重要的是,无法捕获全球时间序列的观点(例如,整体趋势)。为了解决这些问题,我们建议将变压器与季节性趋势分解方法相结合,在这种方法中,分解方法捕获了时间序列的全局概况,而变形金刚捕获了更详细的结构。为了进一步提高变压器的长期预测性能,我们利用了以下事实:大多数时间序列倾向于在诸如傅立叶变换之类的知名基础上具有稀疏的表示形式,并开发出频率增强的变压器。除了更有效外,所提出的方法被称为频率增强分解变压器({\ bf fedFormer}),比标准变压器更有效,具有线性复杂性对序列长度。我们对六个基准数据集的实证研究表明,与最先进的方法相比,FedFormer可以将预测错误降低14.8 \%$ $和$ 22.6 \%\%\%\%$ $,分别为多变量和单变量时间序列。代码可在https://github.com/maziqing/fedformer上公开获取。
translated by 谷歌翻译
Time series forecasting is a long-standing challenge due to the real-world information is in various scenario (e.g., energy, weather, traffic, economics, earthquake warning). However some mainstream forecasting model forecasting result is derailed dramatically from ground truth. We believe it's the reason that model's lacking ability of capturing frequency information which richly contains in real world datasets. At present, the mainstream frequency information extraction methods are Fourier transform(FT) based. However, use of FT is problematic due to Gibbs phenomenon. If the values on both sides of sequences differ significantly, oscillatory approximations are observed around both sides and high frequency noise will be introduced. Therefore We propose a novel frequency enhanced channel attention that adaptively modelling frequency interdependencies between channels based on Discrete Cosine Transform which would intrinsically avoid high frequency noise caused by problematic periodity during Fourier Transform, which is defined as Gibbs Phenomenon. We show that this network generalize extremely effectively across six real-world datasets and achieve state-of-the-art performance, we further demonstrate that frequency enhanced channel attention mechanism module can be flexibly applied to different networks. This module can improve the prediction ability of existing mainstream networks, which reduces 35.99% MSE on LSTM, 10.01% on Reformer, 8.71% on Informer, 8.29% on Autoformer, 8.06% on Transformer, etc., at a slight computational cost ,with just a few line of code. Our codes and data are available at https://github.com/Zero-coder/FECAM.
translated by 谷歌翻译
由于流量大数据的增加,交通预测逐渐引起了研究人员的注意力。因此,如何在交通数据中挖掘复杂的时空相关性以预测交通状况更准确地成为难题。以前的作品组合图形卷积网络(GCNS)和具有深度序列模型的自我关注机制(例如,复发性神经网络),分别捕获时空相关性,忽略时间和空间的关系。此外,GCNS受到过平滑问题的限制,自我关注受到二次问题的限制,导致GCN缺乏全局代表能力,自我注意力效率低下捕获全球空间依赖性。在本文中,我们提出了一种新颖的交通预测深入学习模型,命名为多语境意识的时空关节线性关注(STJLA),其对时空关节图应用线性关注以捕获所有时空之间的全球依赖性节点有效。更具体地,STJLA利用静态结构上下文和动态语义上下文来提高模型性能。基于Node2VEC和单热编码的静态结构上下文丰富了时空位置信息。此外,基于多头扩散卷积网络的动态空间上下文增强了局部空间感知能力,并且基于GRU的动态时间上下文分别稳定了线性关注的序列位置信息。在两个现实世界交通数据集,英格兰和PEMSD7上的实验表明,我们的Stjla可以获得高达9.83%和3.08%,在最先进的基线上的衡量标准的准确性提高。
translated by 谷歌翻译
近年来,已对变压器进行了积极研究,以预测。尽管在各种情况下经常显示出令人鼓舞的结果,但传统的变压器并非旨在充分利用时间序列数据的特征,因此遭受了一些根本的限制,例如,它们通常缺乏分解能力和解释性,并且既不有效,也没有有效的效率 - 期望。在本文中,我们提出了一种新颖的时间序列变压器体系结构Etsformer,它利用了指数平滑的原理,以改善变压器的时间序列预测。特别是,受到预测时间序列的经典指数平滑方法的启发,我们提出了新型的指数平滑注意力(ESA)和频率注意(FA),以替代香草变压器中的自我发挥机制,从而提高了准确性和效率。基于这些,我们使用模块化分解块重新设计了变压器体系结构,以便可以学会将时间序列数据分解为可解释的时间序列组件,例如水平,增长和季节性。对各种时间序列基准的广泛实验验证了该方法的功效和优势。代码可从https://github.com/salesforce/etsformer获得。
translated by 谷歌翻译
交通预测在智能运输系统中起着不可或缺的作用,使每日旅行更方便和更安全。然而,时空相关的动态演化使得准确的流量预测非常困难。现有工作主要采用图形神经NetWroks(GNNS)和深度时间序列模型(例如,复发性神经网络),以捕获动态交通系统中的复杂时空模式。对于空间模式,GNN难以在道路网络中提取全局空间信息,即远程传感器信息。虽然我们可以使用自我关注来提取全球空间信息,如前面的工作中,它也伴随着巨大的资源消耗。对于时间模式,交通数据不仅易于识别每日和每周趋势,而且难以识别由事故引起的短期噪音(例如,汽车事故和雷暴)。现有交通模型难以在时间序列中区分复杂的时间模式,因此难以实现准确的时间依赖。为了解决上述问题,我们提出了一种新颖的噪声感知高效时空变压器架构,用于准确的交通预测,名为StFormer。 Stformer由两个组件组成,这是噪声感知的时间自我关注(NATSA)和基于图形的稀疏空间自我关注(GBS3A)。 NATSA将高频分量和低频分量与时间序列分开以消除噪声并分别通过学习滤波器和时间自我关注捕获稳定的时间依赖性。 GBS3A以基于图形的稀疏查询替换vanilla自我关注的完整查询,以减少时间和内存使用情况。四个现实世界交通数据集的实验表明,履带器优于较低的计算成本的最先进的基线。
translated by 谷歌翻译
本研究提出了两种直接但有效的方法,以减少通过使用多时间级时间序列数据作为输入通过经常性神经网络(RNN)来计算时间序列建模所需的计算时间。一种方法并行地提供输入时间序列的粗略和精细时间分辨率至RNN。在将它们视为RNN的输入之前,另一个将输入时间序列数据的粗略和精细时间分辨率连接在一起。在这两种方法中,首先,利用更精细的时间分辨率数据来学习目标数据的精细时间尺度行为。接下来,预期较粗糙的时间分辨率数据将捕获输入和目标变量之间的长时间依赖性。通过采用长期和短期记忆(LSTM)网络,在雪撬流域实施时,为每小时降雨 - 径流建模实施,这是一种新型的RNN。随后,使用每日和每小时的气象数据作为输入,并将每小时流量放电视为目标数据。结果证实,两种拟议方法都可以显着降低RNN培训的计算时间(高达32.4次)。此外,提出的方法之一提高了估计准确性。
translated by 谷歌翻译
对传染病疾病的准确预测是有效控制该地区流行病的关键。大多数现有方法忽略了区域之间的潜在动态依赖性或区域之间的时间依赖性和相互依存关系的重要性。在本文中,我们提出了一个内部和内部嵌入式融合网络(SEFNET),以改善流行病预测性能。 SEFNET由两个平行模块组成,分别是嵌入模块的系列间嵌入模块。在嵌入模块的串间嵌入模块中,提出了一个多尺度的统一卷积组件,称为“区域感知卷积”,该组件与自我发挥作用,以捕获从多个区域获得的时间序列之间捕获动态依赖性。内部嵌入模块使用长期的短期内存来捕获每个时间序列中的时间关系。随后,我们学习了两个嵌入的影响度,并将它们与参数矩阵融合法融合在一起。为了进一步提高鲁棒性,Sefnet还与非线性神经网络并行整合了传统的自回归组件。在四个现实世界流行有关的数据集上进行的实验表明,SEFNET具有有效性,并且表现优于最先进的基线。
translated by 谷歌翻译
多元时间序列(MTS)预测在广泛的应用中起着至关重要的作用。最近,时空图神经网络(STGNN)已成为越来越流行的MTS预测方法。 STGNN通过图神经网络和顺序模型共同对MTS的空间和时间模式进行建模,从而显着提高了预测准确性。但是受模型复杂性的限制,大多数STGNN仅考虑短期历史MTS数据,例如过去一个小时的数据。但是,需要根据长期的历史MTS数据来分析时间序列的模式及其之间的依赖关系(即时间和空间模式)。为了解决这个问题,我们提出了一个新颖的框架,其中STGNN通过可扩展的时间序列预训练模型(步骤)增强。具体而言,我们设计了一个预训练模型,以从非常长期的历史时间序列(例如,过去两周)中有效地学习时间模式并生成细分级表示。这些表示为短期时间序列输入到STGNN提供了上下文信息,并促进了时间序列之间的建模依赖关系。三个公共现实世界数据集的实验表明,我们的框架能够显着增强下游STGNN,并且我们的训练前模型可恰当地捕获时间模式。
translated by 谷歌翻译
由于非平稳性,现实世界多变量时间序列(MTS)的分布会随着时间而变化,称为分布漂移。大多数现有的MT预测模型都会极大地遭受分销漂移的影响,并随着时间的推移降低了预测性能。现有方法通过适应最新到达数据或根据未来数据得出的元知识进行自我纠正来解决分布漂移。尽管在MT的预测中取得了巨大的成功,但这些方法几乎无法捕获固有的分布变化,尤其是从分布的角度来看。因此,我们提出了一个新型的框架时间条件变化自动编码器(TCVAE),以对MTS中历史观察结果和未来数据之间的动态分布依赖性进行建模,并将依赖性作为时间条件分布推断为利用潜在变量。具体而言,新型的颞鹰注意机制代表了随后馈入馈送前网络的时间因素,以估计潜在变量的先前高斯分布。时间因素的表示进一步动态地调整了基于变压器的编码器和解码器的结构,以利用门控注意机制来变化。此外,我们引入条件连续归一化流量,以将先前的高斯转化为复杂且无形式的分布,以促进对时间条件分布的灵活推断。在六个现实世界MTS数据集上进行的广泛实验表明,与最先进的MTS预测基线相比,TCVAE的出色鲁棒性和有效性。我们进一步说明了TCVAE通过多方面的案例研究和现实情况下的可视化来说明TCVAE的适用性。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译
最近的研究表明,诸如RNN和Transformers之类的深度学习模型为长期预测时间序列带来了显着的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。为此,我们设计了一个\ textbf {f}要求\ textbf {i} mpraved \ textbf {l} egendre \ textbf {m} emory模型,或{\ bf film}:它应用了legendre promotions topimate legendre provientions近似历史信息,近似历史信息,使用傅立叶投影来消除噪声,并添加低级近似值以加快计算。我们的实证研究表明,所提出的膜显着提高了由(\ textbf {20.3 \%},\ textbf {22.6 \%})的多变量和单变量长期预测中最新模型的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。
translated by 谷歌翻译