在本文中,我们研究了高维条件独立测试,统计和机器学习中的关键构建块问题。我们提出了一种基于双生成对抗性网络(GANS)的推理程序。具体来说,我们首先介绍双GANS框架来学习两个发电机的条件分布。然后,我们将这两个生成器集成到构造测试统计,这采用多个转换函数的广义协方差措施的最大形式。我们还采用了数据分割和交叉拟合来最小化发电机上的条件,以实现所需的渐近属性,并采用乘法器引导来获得相应的$ P $ -Value。我们表明,构造的测试统计数据是双重稳健的,并且由此产生的测试既逆向I误差,并具有渐近的电源。同样的是,与现有测试相比,我们建立了较弱和实际上更可行的条件下的理论保障,我们的提案提供了如何利用某些最先进的深层学习工具(如GAN)的具体示例帮助解决古典但具有挑战性的统计问题。我们通过模拟和应用于抗癌药物数据集来证明我们的测试的疗效。在https://github.com/tianlinxu312/dgcit上提供了所提出的程序的Python实现。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
多式联运成像已转化神经科学研究。虽然它提出了前所未有的机会,但它也会冒着严峻的挑战。特别地,难以将归因于简单关联模型的解释性的优点与通过高度自适应非线性模型实现的灵活性组合。在本文中,我们提出了一个正交化的内核脱叠机器学习方法,该方法建立在奈曼正交性和一种分解正交性的形式,用于多模式数据分析。我们针对几乎所有多式化研究中自然出现的环境,其中有一个主要的兴趣模式,以及额外的辅助方式。我们建立了估计主要参数,半参数估计效率和预测的主要模型效应的置信带的渐近有效性的root-$ n $和渐近常态。我们的建议在很大程度上享有模型可解释性和模型灵活性。它与现有的多式联数据集成统计方法以及基于正交性的高维推论的方法也很大。我们通过模拟和应用于阿尔茨海默病的多模峰神经影像研究的应用,证明了我们的方法的功效。
translated by 谷歌翻译
A / B测试或在线实验是一种标准的业务策略,可以在制药,技术和传统行业中与旧产品进行比较。在双面市场平台(例如优步)的在线实验中出现了主要挑战,其中只有一个单位接受一系列处理随着时间的推移。在这些实验中,给定时间的治疗会影响当前结果以及未来的结果。本文的目的是引入用于在这些实验中携带A / B测试的加强学习框架,同时表征长期治疗效果。我们所提出的测试程序允许顺序监控和在线更新。它通常适用于不同行业的各种治疗设计。此外,我们系统地研究了我们测试程序的理论特性(例如,尺寸和功率)。最后,我们将框架应用于模拟数据和从技术公司获得的真实数据示例,以说明其在目前的实践中的优势。我们的测试的Python实现是在https://github.com/callmespring/causalrl上找到的。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
个性化决定规则(IDR)是一个决定函数,可根据他/她观察到的特征分配给定的治疗。文献中的大多数现有工作考虑使用二进制或有限的许多治疗方案的设置。在本文中,我们专注于连续治疗设定,并提出跳跃间隔 - 学习,开发一个最大化预期结果的个性化间隔值决定规则(I2DR)。与推荐单一治疗的IDRS不同,所提出的I2DR为每个人产生了一系列治疗方案,使其在实践中实施更加灵活。为了获得最佳I2DR,我们的跳跃间隔学习方法估计通过跳转惩罚回归给予治疗和协变量的结果的条件平均值,并基于估计的结果回归函数来衍生相应的最佳I2DR。允许回归线是用于清晰的解释或深神经网络的线性,以模拟复杂的处理 - 协调会相互作用。为了实现跳跃间隔学习,我们开发了一种基于动态编程的搜索算法,其有效计算结果回归函数。当结果回归函数是处理空间的分段或连续功能时,建立所得I2DR的统计特性。我们进一步制定了一个程序,以推断(估计)最佳政策下的平均结果。进行广泛的模拟和对华法林研究的真实数据应用,以证明所提出的I2DR的经验有效性。
translated by 谷歌翻译
我们提出了一项新的条件依赖度量和有条件独立性的统计检验。该度量基于在有限位置评估的两个合理分布的分析内嵌入之间的差异。我们在条件独立性的无效假设下获得其渐近分布,并从中设计一致的统计检验。我们进行了一系列实验,表明我们的新测试在I型和类型II误差方面都超过了最先进的方法,即使在高维设置中也是如此。
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
概率分布之间的差异措施,通常被称为统计距离,在概率理论,统计和机器学习中普遍存在。为了在估计这些距离的距离时,对维度的诅咒,最近的工作已经提出了通过带有高斯内核的卷积在测量的分布中平滑局部不规则性。通过该框架的可扩展性至高维度,我们研究了高斯平滑$ P $ -wassersein距离$ \ mathsf {w} _p ^ {(\ sigma)} $的结构和统计行为,用于任意$ p \ GEQ 1 $。在建立$ \ mathsf {w} _p ^ {(\ sigma)} $的基本度量和拓扑属性之后,我们探索$ \ mathsf {w} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,其中$ \ hat {\ mu} _n $是$ n $独立观察的实证分布$ \ mu $。我们证明$ \ mathsf {w} _p ^ {(\ sigma)} $享受$ n ^ { - 1/2} $的参数经验融合速率,这对比$ n ^ { - 1 / d} $率对于未平滑的$ \ mathsf {w} _p $ why $ d \ geq 3 $。我们的证明依赖于控制$ \ mathsf {w} _p ^ {(\ sigma)} $ by $ p $ th-sting spoollow sobolev restion $ \ mathsf {d} _p ^ {(\ sigma)} $并导出限制$ \ sqrt {n} \,\ mathsf {d} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,适用于所有尺寸$ d $。作为应用程序,我们提供了使用$ \ mathsf {w} _p ^ {(\ sigma)} $的两个样本测试和最小距离估计的渐近保证,使用$ p = 2 $的实验使用$ \ mathsf {d} _2 ^ {(\ sigma)} $。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
在本文中,我们的目标是提供对半监督(SS)因果推理的一般性和完全理解治疗效果。具体而言,我们考虑两个这样的估计值:(a)平均治疗效果和(b)定量处理效果,作为原型案例,在SS设置中,其特征在于两个可用的数据集:(i)标记的数据集大小$ N $,为响应和一组高维协变量以及二元治疗指标提供观察。 (ii)一个未标记的数据集,大小超过$ n $,但未观察到的响应。使用这两个数据集,我们开发了一个SS估计系列,该系列是:(1)更强大,并且(2)比其监督对应力更高的基于标记的数据集。除了通过监督方法可以实现的“标准”双重稳健结果(在一致性方面),我们还在正确指定模型中的倾向得分,我们进一步建立了我们SS估计的根本-N一致性和渐近常态。没有需要涉及的特定形式的滋扰职能。这种改善的鲁棒性来自使用大规模未标记的数据,因此通常不能在纯粹监督的环境中获得。此外,只要正确指定所有滋扰函数,我们的估计值都显示为半参数效率。此外,作为滋扰估计器的说明,我们考虑逆概率加权型核平滑估计,涉及未知的协变量转换机制,并在高维情景新颖的情况下建立其统一的收敛速率,这应该是独立的兴趣。两种模拟和实际数据的数值结果验证了我们对其监督对应物的优势,了解鲁棒性和效率。
translated by 谷歌翻译
本文关注的是,基于无限视野设置中预采用的观察数据,为目标策略的价值离线构建置信区间。大多数现有作品都假定不存在混淆观察到的动作的未测量变量。但是,在医疗保健和技术行业等实际应用中,这种假设可能会违反。在本文中,我们表明,使用一些辅助变量介导动作对系统动态的影响,目标策略的价值在混杂的马尔可夫决策过程中可以识别。基于此结果,我们开发了一个有效的非政策值估计器,该估计值可用于潜在模型错误指定并提供严格的不确定性定量。我们的方法是通过理论结果,从乘车共享公司获得的模拟和真实数据集证明的。python实施了建议的过程,请访问https://github.com/mamba413/cope。
translated by 谷歌翻译
当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
translated by 谷歌翻译
我们认为离政策在连续处理设置,如个性化的剂量调查评价(OPE)。在OPE,一个目标来估算下使用不同的决策规则产生的历史数据的新的治疗决策规则中的平均结果。离散处理设置上OPE焦点大多数现有的作品。为了应对持续的治疗,我们开发使用OPE深跳学习一种新的估计方法。我们的方法在于在使用深离散化,通过利用深度学习和多尺度变化点检测自适应离散化治疗领域的主要成分。这使我们能够应用在离散处理现有OPE方法来处理连续治疗。我们的方法是通过理论计算结果,模拟和实际应用程序,以华法林给药进一步合理的。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
随机森林仍然是最受欢迎的现成监督学习算法之一。尽管他们记录了良好的经验成功,但直到最近,很少有很少的理论结果来描述他们的表现和行为。在这项工作中,我们通过建立随机森林和其他受监督学习集合的融合率来推动最近的一致性和渐近正常的工作。我们培养了广义U形统计的概念,并显示在此框架内,随机森林预测可能对比以前建立的较大的子样本尺寸可能保持渐近正常。我们还提供Berry-esseen的界限,以量化这种收敛的速度,使得分列大小的角色和确定随机森林预测分布的树木的角色。
translated by 谷歌翻译
我们考虑在离线域中的强化学习(RL)方法,没有其他在线数据收集,例如移动健康应用程序。计算机科学文献中的大多数现有策略优化算法都是在易于收集或模拟的在线设置中开发的。通过预采用的离线数据集,它们对移动健康应用程序的概括尚不清楚。本文的目的是开发一个新颖的优势学习框架,以便有效地使用预采用的数据进行策略优化。所提出的方法采用由任何现有的最新RL算法计算的最佳Q-估计器作为输入,并输出一项新策略,其价值比基于初始Q-得出的策略更快地收敛速度。估计器。进行广泛的数值实验以支持我们的理论发现。我们提出的方法的Python实现可在https://github.com/leyuanheart/seal上获得。
translated by 谷歌翻译
我们使用最大平均差异(MMD),Hilbert Schmidt独立标准(HSIC)和内核Stein差异(KSD),,提出了一系列针对两样本,独立性和合适性问题的计算效率,非参数测试,用于两样本,独立性和合适性问题。分别。我们的测试统计数据是不完整的$ u $统计信息,其计算成本与与经典$ u $ u $统计测试相关的样本数量和二次时间之间的线性时间之间的插值。这三个提出的测试在几个内核带宽上汇总,以检测各种尺度的零件:我们称之为结果测试mmdagginc,hsicagginc和ksdagginc。对于测试阈值,我们得出了一个针对野生引导不完整的$ U $ - 统计数据的分位数,该统计是独立的。我们得出了MMDagginc和Hsicagginc的均匀分离率,并准确量化了计算效率和可实现速率之间的权衡:据我们所知,该结果是基于不完整的$ U $统计学的测试新颖的。我们进一步表明,在二次时间案例中,野生引导程序不会对基于更广泛的基于置换的方法进行测试功率,因为​​两者都达到了相同的最小最佳速率(这反过来又与使用Oracle分位数的速率相匹配)。我们通过数值实验对计算效率和测试能力之间的权衡进行数字实验来支持我们的主张。在三个测试框架中,我们观察到我们提出的线性时间聚合测试获得的功率高于当前最新线性时间内核测试。
translated by 谷歌翻译