当许多机器人必须在狭窄的空间中一起工作时,可以通过向前时间窗口进行精确的协调计划,可以安全,高效的运动,但这通常需要对所有设备的集中控制,这很难扩展。我们演示了GBP计划,这是一种基于高斯信念传播的多机器人计划问题的新型纯粹分布技术,该技术由定义动态和碰撞约束的通用因素图制成。在模拟中,我们表明我们的方法允许极高的性能协作计划,在繁忙,复杂的场景中,机器人能够互相交叉。即使在沟通失败的情况下,它们也比替代分布式计划技术保持更短,更快,更光滑的轨迹。
translated by 谷歌翻译
We argue the case for Gaussian Belief Propagation (GBP) as a strong algorithmic framework for the distributed, generic and incremental probabilistic estimation we need in Spatial AI as we aim at high performance smart robots and devices which operate within the constraints of real products. Processor hardware is changing rapidly, and GBP has the right character to take advantage of highly distributed processing and storage while estimating global quantities, as well as great flexibility. We present a detailed tutorial on GBP, relating to the standard factor graph formulation used in robotics and computer vision, and give several simulation examples with code which demonstrate its properties.
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
Practical operations of coordinated fleets of mobile robots in different environments reveal benefits of maintaining small distances between robots as they move at higher speeds. This is counter-intuitive in that as speed increases, increased distances would give robots a larger time to respond to sudden motion variations in surrounding robots. However, there is a desire to have lower inter-robot distances in examples like autonomous trucks on highways to optimize energy by vehicle drafting or smaller robots in cluttered environments to maintain communication, etc. This work introduces a model based control framework that directly takes non-linear system dynamics into account. Each robot is able to follow closer at high speeds because it makes predictions on the state information from its adjacent robots and biases it's response by anticipating adjacent robots' motion. In contrast to existing controllers, our non-linear model based predictive decentralized controller is able to achieve lower inter-robot distances at higher speeds. We demonstrate the success of our approach through simulated and hardware results on mobile ground robots.
translated by 谷歌翻译
This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
多机器人运动计划(MRMP)是在运动动力学约束下针对在环境中作用的多个机器人的非缩进轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于动力学冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径查找(MAPF))具有灵感。具体来说,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力动力学的约束在本地进行治疗。 K-CBS计划使用低级规划师分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。
translated by 谷歌翻译
虽然当前用于自动驾驶机器人导航的系统可以在静态环境中产生安全有效的运动计划,但当多个机器人必须在狭窄的空间中一起导航时,它们通常会产生次优行为。例如,当两个机器人在狭窄的走廊上相遇时,他们可以转身找到替代路线,或者相互碰撞。本文提出了一种新的导航方法,该方法允许两个机器人在狭窄的走廊中相互通过,而无需碰撞,停止或等待。我们的方法是走廊传递(PHHP)的感知幻觉,学会了合成产生虚拟障碍(即感知幻觉),以促进多个机器人在狭窄的走廊中使用,这些机器人利用原本标准的自主导航系统。与多个基线相比,我们对各种走廊中物理机器人的实验表现出改善的性能。
translated by 谷歌翻译
本文考虑了安全协调一个配备传感器的机器人团队的问题,以减少有关动态过程的不确定性,而该过程将使目标消除信息增益和能源成本。优化这种权衡是可取的,但是在机器人轨迹集中导致非占主酮目标函数。因此,基于协调下降的普通多机器人计划者失去了其性能保证。此外,处理非单调性的方法在受到机器人间碰撞避免约束时会失去其性能保证。由于需要保留性能保证和安全保证,这项工作提出了一种分布式计划者的层次结构方法,该方法使用本地搜索,并根据控制屏障功能提供了基于控制屏障功能的当地搜索和分散的控制器,以确保安全并鼓励及时到达传感位置。通过大量的模拟,硬件测试和硬件实验,我们证明了所提出的方法比基于坐标下降的算法在感应和能源成本之间取得更好的权衡。
translated by 谷歌翻译
神经辐射场(NERF)最近被成为自然,复杂3D场景的代表的强大范例。 NERFS表示神经网络中的连续体积密度和RGB值,并通过射线跟踪从看不见的相机观点生成照片逼真图像。我们提出了一种算法,用于通过仅使用用于本地化的板载RGB相机表示为NERF的3D环境导航机器人。我们假设现场的NERF已经预先训练了离线,机器人的目标是通过NERF中的未占用空间导航到目标姿势。我们介绍了一种轨迹优化算法,其避免了基于NERF中的高密度区域的碰撞,其基于差分平整度的离散时间版本,其可用于约束机器人的完整姿势和控制输入。我们还介绍了基于优化的过滤方法,以估计单位的RGB相机中的NERF中机器人的6dof姿势和速度。我们将轨迹策划器与在线重新循环中的姿势过滤器相结合,以提供基于视觉的机器人导航管道。我们使用丛林健身房环境,教堂内部和巨石阵线导航的四轮车机器人,使用RGB相机展示仿真结果。我们还展示了通过教会导航的全向地面机器人,要求它重新定位以缩小差距。这项工作的视频可以在https://mikh3x4.github.io/nerf-navigation/找到。
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
This paper proposes a new 3D gas distribution mapping technique based on the local message passing of Gaussian belief propagation that is capable of resolving in real time, concentration estimates in 3D space whilst accounting for the obstacle information within the scenario, the first of its kind in the literature. The gas mapping problem is formulated as a 3D factor graph of Gaussian potentials, the connections of which are conditioned on local occupancy values. The Gaussian belief propagation framework is introduced as the solver and a new hybrid message scheduler is introduced to increase the rate of convergence. The factor graph problem is then redesigned as a dynamically expanding inference task, coupling the information of consecutive gas measurements with local spatial structure obtained by the robot. The proposed algorithm is compared to the state of the art methods in 2D and 3D simulations and is found to resolve distribution maps orders of magnitude quicker than typical direct solvers. The proposed framework is then deployed for the first time onboard a ground robot in a 3D mapping and exploration task. The system is shown to be able to resolve multiple sensor inputs and output high resolution 3D gas distribution maps in a GPS denied cluttered scenario in real time. This online inference of complicated plume structures provides a new layer of contextual information over its 2D counterparts and enables autonomous systems to take advantage of real time estimates to inform potential next best sampling locations.
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译