我们研究在计算和通信约束下分布式设置中高维稀疏线性回归的问题。具体来说,我们考虑了一个星形拓扑网络,该网络将几台机器连接到融合中心,他们可以与他们交换相对较短的消息。每台机器都有来自线性回归模型的嘈杂样品,该模型具有相同的未知稀疏$ d $ - 维数二维矢量$ \ theta $。融合中心的目标是使用几乎没有计算和有限的通信在每台机器上估算矢量$ \ theta $及其支持。在这项工作中,我们考虑基于正交匹配追求(OMP)的分布式算法,并理论上研究了他们精确收回$ \ theta $的支持的能力。我们证明,在某些条件下,即使在单个机器无法检测到$ \ theta $的支持下,分布式式方法在$ \ theta $的支持下,在$ d $中的总通信sublinear中正确恢复了它。此外,我们提出的模拟说明了基于分布式OMP的算法的性能,并表明它们的性能类似于更复杂和计算密集的方法,在某些情况下甚至表现优于它们。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
本文旨在提出和理论上分析一种新的分布式方案,用于稀疏线性回归和特征选择。主要目标是根据来自未知稀疏线性模型的嘈杂观测来了解高维数据集的几个因果特征。但是,在$ \ mathbb {r} ^ p $中包含$ n $ data样本的假定培训集已经在大型网络上分发,以通过极低的带宽链路连接的$ n $客户端。此外,我们考虑渐近配置$ 1 \ ll n \ ll n \ ll p $。为了从整个数据集推断出原因尺寸,我们提出了一种简单但有效的网络中的信息共享方法。在这方面,我们理论上表明,可以可靠地恢复真正的因果特征,其中o的$ o o \ lex(n \ log p \ light)$跨越网络。与将所有样本传输到单个节点(集中式场景)的微小情况相比,这产生了显着降低的通信成本,该沟通成本是需要$ o \ lef(np \右)$传输。诸如ADMM的更复杂的方案仍然具有$ o ox的通信复杂性(NP \右)$。令人惊讶的是,我们的样本复杂性被证明是与每个节点中固定性能测量的最佳集中方法的相同(最多常数因素),而NA \“{i} ve分散技术的最佳集中方法以$线性地增长N $。本文的理论担保是基于Javanmard等人的最近脱叠套索的分析框架。(2019),并由几个在合成和现实世界数据集上进行的几台计算机实验支持。
translated by 谷歌翻译
我们研究了恢复单位 - 总稀疏主组件$ x \ in \ mathbb {r}^n $在随机矩阵中种植的计算成本,以wigner或wishart尖峰模型(观察$ w + \ lambda xx xx^xx^ \ top $带有从高斯正交集合中绘制的$ w $,或分别来自$ \ Mathcal {n}(0,i_n + \ beta xx^\ top)$的$ n $独立样本,分别为$)。先前的工作表明,当信噪比(分别$ \ lambda $或$ \ beta \ sqrt {n/n} $)是一个小常数,而种植向量中的非零入口的分数为$ \ \ \ | x \ | _0 / n = \ rho $,如果$ \ rho \ sillsim 1 / \ sqrt {n} $,可以在多项式时间内恢复$ x $。虽然可以在较弱的条件下以$ \ rho \ ll 1 $恢复指数时间的$ x $,但据信,除非$ \ rho \ rho \ simsim 1/\ sqrt {n} $,否则不可能多项式时间恢复。我们研究了“可能但难”制度中恢复所需的精确时间,$ 1/\ sqrt {n} \ ll \ ll \ rho \ ll 1 $通过探索次指定时间算法的功能,即,在时间$中运行的算法$ \ exp(n^\ delta)$对于某些常数$ \ delta \ in(0,1)$。对于任何$ 1/\ sqrt {n} \ ll \ rho \ ll 1 $,我们给出了一个恢复算法的运行时大约$ \ exp(\ rho^2 n)$,表明了稀疏和runtime之间的平稳折衷。我们的算法家族在两种现有算法之间平稳地插入:多项式时间对角线阈值算法和$ \ exp(\ rho n)$ - 时间详尽的搜索算法。此外,通过分析低度的似然比,我们提供了严格的证据,表明我们算法实现的权衡是最佳的。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
本文研究了以$ \ mathbb {r}^d $使用球形协方差矩阵$ \ sigma^2 \ sigma^2 \ mathbf {i} $的$ k $学习中心的样本复杂性。特别是,我们对以下问题感兴趣:最大噪声水平$ \ sigma^2 $是什么,对此样品复杂性基本与从标记的测量值估算中心时相同?为此,我们将注意力限制为问题的贝叶斯公式,其中中心均匀分布在球体上$ \ sqrt {d} \ Mathcal {s}^{d-1} $。我们的主要结果表征了确切的噪声阈值$ \ sigma^2 $,而GMM学习问题(在大系统中限制$ d,k \ to \ infty $)就像从标记的观测值中学习一样容易更加困难。阈值发生在$ \ frac {\ log k} {d} = \ frac12 \ log \ left(1+ \ frac {1} {1} {\ sigma^2} \ right)$,这是添加性白色高斯的能力噪声(AWGN)频道。将$ K $中心的集合作为代码,可以将此噪声阈值解释为最大的噪声水平,AWGN通道上代码的错误概率很小。关于GMM学习问题的先前工作已将中心之间的最小距离确定为确定学习相应GMM的统计难度的关键参数。虽然我们的结果仅是针对中心均匀分布在球体上的GMM的,但他们暗示,也许这是与中心星座相关的解码错误概率作为频道代码确定学习相应GMM的统计难度,而不是仅仅最小距离。
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
压缩传感一直是依赖线性操作的非常成功的高维信号采集和恢复技术。但是,在存储或处理之前,必须对信号的实际测量进行量化。 1(一个) - 位压缩传感是压缩传感的大量量化版本,在其中,信号的每个线性测量都降低到一个位:测量的符号。一旦收集了足够的测量结果,1位压缩感应中的恢复问题旨在以尽可能准确的方式找到原始信号。恢复问题与学习理论中传统的“半空间学习”问题有关。为了恢复稀疏矢量,从1位测量值中的流行重建方法是二元迭代硬阈值(BIHT)算法。该算法是一种简单的投影次级下降法,尽管该问题的概念性不佳,但已知在经验上均能很好地收敛。 BIHT的收敛性属性在理论上没有合理的理由,除了大量的测量值(即,许多大于$ \ max \ {k^{10},24^{48},k^{3.5}/ k^{3.5}/ \ epsilon \} $,其中$ k $是稀疏性,$ \ epsilon $表示近似错误,甚至该表达式隐藏了其他因素)。在本文中,我们表明,BIHT算法仅通过$ \ tilde {o}收敛(\ frac {k} {\ epsilon})$测量。请注意,这种依赖性对$ k $和$ \ epsilon $对于1位压缩传感中的任何恢复方法都是最佳的。据我们所知,BIHT是唯一需要所有参数($ K $和$ \ epsilon $)中最佳测量值的实用和高效(多项式时间)算法。这也是在适当的结构条件下,梯度下降算法转化为非凸问题的正确解决方案的示例。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
恢复来自简单测量的稀疏向量的支持是一个广泛研究的问题,考虑在压缩传感,1位压缩感测和更通用的单一索引模型下。我们考虑这个问题的概括:线性回归的混合物,以及线性分类器的混合物,其中目标是仅使用少量可能嘈杂的线性和1位测量来恢复多个稀疏载体的支持。关键挑战是,来自不同载体的测量是随机混合的。最近也接受了这两个问题。在线性分类器的混合物中,观察结果对应于查询的超平面侧随机未知向量,而在线性回归的混合物中,我们观察在查询的超平面上的随机未知向量的投影。从混合物中回收未知载体的主要步骤是首先识别所有单个组分载体的支持。在这项工作中,我们研究了足以在这两种模型中恢复混合物中所有组件向量的支持的测量数量。我们提供使用$ k,\ log n $和准多项式在$ \ ell $中使用多项式多项式的算法,以恢复在每个人的高概率中恢复所有$ \ ell $未知向量的支持组件是$ k $ -parse $ n $ -dimensional向量。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
This paper analyzes $\ell_1$ regularized linear regression under the challenging scenario of having only adversarially corrupted data for training. We use the primal-dual witness paradigm to provide provable performance guarantees for the support of the estimated regression parameter vector to match the actual parameter. Our theoretical analysis shows the counter-intuitive result that an adversary can influence sample complexity by corrupting the irrelevant features, i.e., those corresponding to zero coefficients of the regression parameter vector, which, consequently, do not affect the dependent variable. As any adversarially robust algorithm has its limitations, our theoretical analysis identifies the regimes under which the learning algorithm and adversary can dominate over each other. It helps us to analyze these fundamental limits and address critical scientific questions of which parameters (like mutual incoherence, the maximum and minimum eigenvalue of the covariance matrix, and the budget of adversarial perturbation) play a role in the high or low probability of success of the LASSO algorithm. Also, the derived sample complexity is logarithmic with respect to the size of the regression parameter vector, and our theoretical claims are validated by empirical analysis on synthetic and real-world datasets.
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
近年来,保护隐私数据分析已成为普遍存在。在本文中,我们提出了分布式私人多数票投票机制,以解决分布式设置中的标志选择问题。为此,我们将迭代剥离应用于稳定性函数,并使用指数机制恢复符号。作为应用程序,我们研究了分布式系统中的平均估计和线性回归问题的私人标志选择。我们的方法与非私有场景一样,用最佳的信噪比恢复了支持和标志,这比私人变量选择的现代作品要好。此外,符号选择一致性具有理论保证是合理的。进行了模拟研究以证明我们提出的方法的有效性。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
We consider distributed linear bandits where $M$ agents learn collaboratively to minimize the overall cumulative regret incurred by all agents. Information exchange is facilitated by a central server, and both the uplink and downlink communications are carried over channels with fixed capacity, which limits the amount of information that can be transmitted in each use of the channels. We investigate the regret-communication trade-off by (i) establishing information-theoretic lower bounds on the required communications (in terms of bits) for achieving a sublinear regret order; (ii) developing an efficient algorithm that achieves the minimum sublinear regret order offered by centralized learning using the minimum order of communications dictated by the information-theoretic lower bounds. For sparse linear bandits, we show a variant of the proposed algorithm offers better regret-communication trade-off by leveraging the sparsity of the problem.
translated by 谷歌翻译