现有的分布式协作多智能体增强学习(MARL)框架通常假设通过共识算法估计全球奖励的无向协调图和通信图。这种框架可能导致昂贵的通信成本,并且由于全球共识的要求,可扩展性差。在这项工作中,我们使用定向协调图研究Marls,并提出了一种分布式RL算法,其中本地策略评估基于本地值函数。通过与其邻居通过定向的学习诱导的通信图来实现每个代理的本地值函数,而不使用任何共识算法。采用基于参数扰动的零顺序优化(动物园)方法来实现梯度估计。通过与现有的基于动物园的RL算法进行比较,我们表明我们提出的分布式RL算法可确保高可扩展性。示出了分布式资源分配示例来说明我们算法的有效性。
translated by 谷歌翻译
本文研究了协同多智能体增强学习(MARL)的分布式政策梯度,在通信网络上的代理人旨在找到最佳政策,以最大限度地提高所有代理人的当地返回的平均值。由于政策梯度的非凹形性能函数,用于凸面问题的现有分布式随机优化方法不能直接用于Marl中的政策梯度。本文提出了一种具有方差减少和渐变跟踪的分布式策略梯度,以解决政策梯度的高差,并利用重要的重量来解决采样过程中的非静止问题。然后,我们在平均平均固定间隙上提供一个上限,这取决于迭代的数量,迷你批量大小,秒钟大小,问题参数和网络拓扑。我们进一步建立了样本和通信复杂性,以获得$ \ epsilon $-upprymate静止点。对MARL控制问题的数值实验进行了验证了所提出算法的有效性。
translated by 谷歌翻译
培训期间的对抗性攻击能够强烈影响多功能增强学习算法的性能。因此,非常希望增加现有算法,使得消除对抗对协作网络的对抗性攻击的影响,或者至少有界限。在这项工作中,我们考虑一个完全分散的网络,每个代理商收到本地奖励并观察全球州和行动。我们提出了一种基于弹性共识的演员 - 批评算法,其中每个代理估计了团队平均奖励和价值函数,并将关联的参数向量传送到其立即邻居。我们表明,在拜占庭代理人的存在下,其估算和通信策略是完全任意的,合作社的估计值会融合到有概率一体的有界共识值,条件是在附近的最多有$ H $拜占庭代理商每个合作社和网络都是$(2h + 1)$ - 强大。此外,我们证明,合作社的政策在其团队平均目标函数的局部最大化器周围汇聚在其团队平均目标函数的概率上,这是对渐关节转移变得稳定的普发因子的政策。
translated by 谷歌翻译
我们表明,在合作$ n $ n $ agent网络中,可以为代理设计本地可执行的策略,以使所得的平均奖励(值)的折现总和非常接近于计算出的最佳价值(包括非本地)策略。具体而言,我们证明,如果$ | \ MATHCAL {X} |,| \ MATHCAL {U} | $表示状态大小和单个代理的操作空间,那么对于足够小的折现因子,近似错误,则由$ \ MATHCAL {o}(e)$ where $ e \ triangleq \ frac {1} {\ sqrt {n}}} \ left [\ sqrt {\ sqrt {| \ Mathcal {x}} |} |} |} |}+\ sqrt { } |} \ right] $。此外,在一种特殊情况下,奖励和状态过渡功能独立于人口的行动分布,错误将$ \ nathcal {o}(e)$提高到其中$ e \ e \ triangleq \ frac {1} {\ sqrt {\ sqrt {n}} \ sqrt {| \ Mathcal {x} |} $。最后,我们还设计了一种算法来明确构建本地政策。在我们的近似结果的帮助下,我们进一步确定构建的本地策略在$ \ Mathcal {o}(\ max \ {e,\ epsilon \})$最佳策略的距离之内对于任何$ \ epsilon> 0 $,本地策略是$ \ MATHCAL {O}(\ Epsilon^{ - 3})$。
translated by 谷歌翻译
最近已证明,平均场控制(MFC)是可扩展的工具,可近似解决大规模的多代理增强学习(MARL)问题。但是,这些研究通常仅限于无约束的累积奖励最大化框架。在本文中,我们表明,即使在存在约束的情况下,也可以使用MFC方法近似MARL问题。具体来说,我们证明,一个$ n $ agent的约束MARL问题,以及每个尺寸的尺寸$ | \ Mathcal {x} | $和$ | \ Mathcal {u} | $的状态和操作空间,可以通过与错误相关的约束MFC问题近似,$ e \ triangleq \ Mathcal {o} \ left([\ sqrt {| \ Mathcal {| \ Mathcal {x} |} |}+\ sqrt {| ]/\ sqrt {n} \ right)$。在奖励,成本和状态过渡功能独立于人口的行动分布的特殊情况下,我们证明该错误可以将错误提高到$ e = \ nathcal {o}(\ sqrt {| | \ Mathcal {x x x } |}/\ sqrt {n})$。另外,我们提供了一种基于自然策略梯度的算法,并证明它可以在$ \ Mathcal {o}(e)$的错误中解决受约束的MARL问题,并具有$ \ MATHCAL {O}的样本复杂性(E^{ - e^{ - 6})$。
translated by 谷歌翻译
We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its $\kappa$-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in $\kappa$. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing $\kappa$. Numerical simulations demonstrate the effectiveness of LPI.
translated by 谷歌翻译
在分散的合作多机构增强学习中,代理可以彼此汇总信息,以学习最大化团队平均目标功能的政策。尽管愿意与他人合作,但各个代理商可能会直接分享有关其当地状态,奖励和价值功能的信息,这是由于隐私问题而不受欢迎的。在这项工作中,我们引入了一种带有TD错误聚合的分散的参与者批判算法,该算法不违反隐私问题,并假设沟通渠道会受到时间延迟和数据包的删除。通过传输数据的维度来衡量,我们为做出如此薄弱的假设所支付的成本是增加的沟通负担。有趣的是,通信负担仅在图形大小上是二次的,这使得适用于大型网络的算法。我们在减小的步进大小下提供收敛分析,以验证代理最大化团队平均目标函数。
translated by 谷歌翻译
我们研究了多智能经纪增强学习的政策评估问题,其中一组代理商,共同观察到的国家和私人本地行动和奖励,协作,以通过连接的无向网络通过本地计算和通信学习给定策略的价值函数。各种大型多种代理系统中出现此问题,包括电网,智能交通系统,无线传感器网络和多代理机器人。当状态动作空间的尺寸大时,广泛使用具有线性函数近似的时间差异学习。在本文中,我们开发了一种新的分布式时间差异学习算法,量化其有限时间性能。我们的算法将分布式随机原始方法与基于同型的方法进行了自适应调整学习率的方法,以便通过从因果导轨轨迹中采用新鲜的在线样本来最小化平均投影的Bellman误差。我们明确考虑了采样的Markovian性质,并改善了从$ O(1 / \ sqrt {t})$到〜$ o(1 / t)$的最佳已知的有限时间误差,其中$ t $迭代的总数。
translated by 谷歌翻译
多智能体增强学习(Marl)最近引起了很多研究。然而,与其单一代理对应物不同,Marl的许多理论和算法方面尚未得到很好的理解。在本文中,我们使用演员 - 评论家(AC)算法研究了自主代理的协调行为的出现。具体而言,我们提出并分析了一类协调的演员 - 批评算法(CAC),其中单独的参数化政策有一个{\ IT共享}部分(其中在所有代理中共同优化)和{\ IT个性化}部分(这是只有当地优化)。这种类型的{\它部分个性化}策略允许代理通过利用同伴的过去的经验来学习协调并适应各个任务。我们设计的灵活性允许提出的Marl-CAC算法用于{\ IT完全分散}设置中使用,其中代理商只能与其邻居通信,以及偶尔代理的{\ IT联合}设置与服务器通信,同时优化其(部分个性化)本地模型。从理论上讲,在一些标准规律性假设下,所提出的Marl-CAC算法需要$ \ mathcal {o}(\ epsilon ^ { - \ frac {5} {2}})$样本来实现$ \ epsilon $ - 固定式解决方案(定义为目标函数梯度的平方标准的解决方案小于$ \ epsilon $)。据我们所知,这项工作为具有部分个性化策略的分散式交流算法提供了第一个有限的样本保证。
translated by 谷歌翻译
我们提出了一种新的多功能增强学习的新型政策梯度方法,其利用了两个不同的差异减少技术,并且不需要在迭代上进行大量批次。具体而言,我们提出了一种基于势头的分散策略梯度跟踪(MDPGT),其中使用新的基于动量的方差减少技术来接近具有重要性采样的本地策略梯度代理,并采用中间参数来跟踪两个连续的策略梯度代理。此外,MDPGT可证明$ \ mathcal {o}的最佳可用样本复杂性(n ^ { - 1} \ epsilon ^ {-3})$,用于汇聚到全球平均值的$ \ epsilon $ -stationary点n $本地性能函数(可能是非旋转)。这优于在分散的无模型增强学习中的最先进的样本复杂性,并且当用单个轨迹初始化时,采样复杂性与现有的分散的政策梯度方法获得的样本复杂性匹配。我们进一步验证了高斯策略函数的理论索赔。当所需的误差容忍$ \ epsilon $足够小时,MDPGT导致线性加速,以前已经在分散的随机优化中建立,但不是为了加强学习。最后,我们在多智能体增强学习基准环境下提供了实证结果,以支持我们的理论发现。
translated by 谷歌翻译
分散的参与者 - 批评(AC)算法已被广泛用于多机构增强学习(MARL),并取得了杰出的成功。除了其经验成功之外,分散的AC算法的理论收敛性在很大程度上没有探索。现有的有限时间收敛结果是基于双环更新或两次尺度的步骤规则得出的,这在实际实施中不经常采用。在这项工作中,我们介绍了一种完全分散的AC算法,演员,评论家和全球奖励估算器以交替的方式更新,阶跃尺寸的顺序相同,即,我们采用\ emph {single-emph {single-timesscale}更新。从理论上讲,使用线性近似进行价值和奖励估计,我们表明我们的算法具有$ \ tilde {\ Mathcal {o}}}(\ epsilon^{ - 2})$的样本复杂性,在马尔可夫式采样下与最佳复杂性相匹配双环实现(在此,$ \ tilde {\ Mathcal {o}} $隐藏了日志项)。样本复杂性可以提高到$ {\ Mathcal {o}}(\ epsilon^{ - 2})$下的I.I.D.采样方案。建立我们的复杂性结果的核心是\ emph {我们揭示的最佳评论家变量的隐藏平滑度}。我们还提供了算法及其分析的本地动作隐私版本。最后,我们进行实验,以显示我们算法优于现有的分散AC算法的优势。
translated by 谷歌翻译
This paper studies a class of multi-agent reinforcement learning (MARL) problems where the reward that an agent receives depends on the states of other agents, but the next state only depends on the agent's own current state and action. We name it REC-MARL standing for REward-Coupled Multi-Agent Reinforcement Learning. REC-MARL has a range of important applications such as real-time access control and distributed power control in wireless networks. This paper presents a distributed and optimal policy gradient algorithm for REC-MARL. The proposed algorithm is distributed in two aspects: (i) the learned policy is a distributed policy that maps a local state of an agent to its local action and (ii) the learning/training is distributed, during which each agent updates its policy based on its own and neighbors' information. The learned policy is provably optimal among all local policies and its regret bounds depend on the dimension of local states and actions. This distinguishes our result from most existing results on MARL, which often obtain stationary-point policies. The experimental results of our algorithm for the real-time access control and power control in wireless networks show that our policy significantly outperforms the state-of-the-art algorithms and well-known benchmarks.
translated by 谷歌翻译
我们在具有代理网络的环境中研究强化学习(RL),其状态和行动以当地的方式交互,其中目标是找到本地化策略,以便最大化(折扣)全局奖励。此设置中的一个根本挑战是状态 - 行动空间大小在代理的数量中呈指数级级别,呈现大网络难以解决的问题。在本文中,我们提出了一个可扩展的演员评论家(SAC)框架,用于利用网络结构并找到一个$ O(\ Rho ^ {\ Kappa})$ - 近似于某些目标的静止点的近似$ \ rho \ in(0,1)$,复杂性,与网络最大的$ \ kappa $-hop邻居的本地状态动作空间大小缩放。我们使用无线通信,流行和流量的示例说明了我们的模型和方法。
translated by 谷歌翻译
我们讨论了这项工作中分散的多智能经纪增强学习(Marl)的问题。在我们的环境中,假设全局状态,行动和奖励是完全可观察的,而当地政策受到每个特工的保护,因此无法与他人分享。存在通信图,其中代理可以与其邻居交换信息。代理人使个人决定并合作达到更高的累计奖励。为此,我们首先提出了一个分散的演员 - 评论家(AC)设定。然后,策略评估和策略改进算法分别为离散和连续的状态 - 动作空间马尔可夫决策过程(MDP)设计。此外,在离散空间案件下给出了会聚分析,保证了通过在政策评估和政策改进的过程之间交替来加强政策。为了验证算法的有效性,我们设计实验并将它们与先前的算法进行比较,例如Q-Learning \ Cite {Watkins1992Q}和Maddpg \ Cite {Lowe2017Multi}。结果表明,我们的算法从学习速度和最终性能的各个方面表现出更好。此外,算法可以以违规方式执行,这大大提高了与策略算法相比的数据效率。
translated by 谷歌翻译
多功能钢筋学习已成功应用于许多挑战性问题。尽管有这些经验成功,但对不同算法的理论理解缺乏,主要是由于状态 - 行动空间的指数增长与代理人数引起的维度诅咒。我们研究了多蛋白线性二次调节剂(LQR)的基本问题,在该刻度部分可互换的情况下。在此设置中,我们开发了一个分层演员 - 批评算法,其计算复杂性独立于代理总数,并证明了其全局线性融合到最佳政策。由于LQRS经常用于近似一般动态系统,本文提供了更好地理解一般分层平均场多功能增强学习的重要一步。
translated by 谷歌翻译
增强学习算法需要大量样品;这通常会限制他们的现实应用程序在简单的任务上。在多代理任务中,这种挑战更为出色,因为操作的每个步骤都需要进行沟通,转移或资源。这项工作旨在通过基于模型的学习来提高多代理控制的数据效率。我们考虑了代理商合作并仅与邻居进行当地交流的网络系统,并提出了基于模型的政策优化框架(DMPO)。在我们的方法中,每个代理都会学习一个动态模型,以预测未来的状态并通过通信广播其预测,然后在模型推出下训练策略。为了减轻模型生成数据的偏见,我们限制了用于产生近视推出的模型使用量,从而减少了模型生成的复合误差。为了使策略更新的独立性有关,我们引入了扩展的价值函数,理论上证明了由此产生的策略梯度是与真实策略梯度的紧密近似。我们在几个智能运输系统的基准上评估了我们的算法,这些智能运输系统是连接的自动驾驶汽车控制任务(FLOW和CACC)和自适应交通信号控制(ATSC)。经验结果表明,我们的方法可以实现卓越的数据效率,并使用真实模型匹配无模型方法的性能。
translated by 谷歌翻译
我们提出了足够的条件,确保了多代理深度确定性政策梯度(DDPG)算法的融合。它是用于解决连续动作空间的深度加强学习(DEEPRL)最受欢迎范式之一的示例:演员 - 批评范式。在这里考虑的设置中,每个代理人会观察全局状态空间的一部分,以便采用本地措施,它收到本地奖励。对于每个代理商,DDPG列举了当地的演员(政策)和当地评论家(Q-Function)。分析表明,使用神经网络的多代理DDPG将近似当地政策和批评者收敛到具有以下性质的限制:评论家限制最小化平均平均贝尔曼损失; actor限制参数化策略,最大化当地批评的$ q_i ^ * $的近似,其中$ i $是代理索引。对于全局状态动作空间的概率分布,平均是对全局状态行动空间的概率分布。它捕获了所有本地培训过程的渐近学。最后,我们将分析扩展到一个完全分散的设置,其中代理通过无线网络达到延迟和损失;典型的情景,例如机器人应用。
translated by 谷歌翻译
Reinforcement learning is a framework for interactive decision-making with incentives sequentially revealed across time without a system dynamics model. Due to its scaling to continuous spaces, we focus on policy search where one iteratively improves a parameterized policy with stochastic policy gradient (PG) updates. In tabular Markov Decision Problems (MDPs), under persistent exploration and suitable parameterization, global optimality may be obtained. By contrast, in continuous space, the non-convexity poses a pathological challenge as evidenced by existing convergence results being mostly limited to stationarity or arbitrary local extrema. To close this gap, we step towards persistent exploration in continuous space through policy parameterizations defined by distributions of heavier tails defined by tail-index parameter alpha, which increases the likelihood of jumping in state space. Doing so invalidates smoothness conditions of the score function common to PG. Thus, we establish how the convergence rate to stationarity depends on the policy's tail index alpha, a Holder continuity parameter, integrability conditions, and an exploration tolerance parameter introduced here for the first time. Further, we characterize the dependence of the set of local maxima on the tail index through an exit and transition time analysis of a suitably defined Markov chain, identifying that policies associated with Levy Processes of a heavier tail converge to wider peaks. This phenomenon yields improved stability to perturbations in supervised learning, which we corroborate also manifests in improved performance of policy search, especially when myopic and farsighted incentives are misaligned.
translated by 谷歌翻译
我们研究了在随机代理网络中的多功能加固学习(MARL)。目标是找到最大化(折扣)全球奖励的本地化政策。通常,可扩展性在此设置中是一个挑战,因为全局状态/动作空间的大小可以是代理的数量的指数。在依赖性是静态,固定和局部,例如,在固定的,时不变的底层图形的邻居之间,才知道可扩展算法。在这项工作中,我们提出了一个可扩展的演员评论家框架,适用于依赖关系可以是非本地和随机的设置,并提供有限误差绑定,显示了收敛速度如何取决于网络中的信息速度。另外,作为我们分析的副产物,我们获得了一般随机近似方案的新型有限时间收敛结果,以及具有状态聚合的时间差异学习,其超出了网络系统中的Marl的设置。
translated by 谷歌翻译
平均现场控制(MFC)是减轻合作多功能加强学习(MARL)问题的维度诅咒的有效方法。这项工作考虑了可以分离为$ k $课程的$ n _ {\ mathrm {pop}} $异质代理的集合,以便$ k $ -th类包含$ n_k $均匀的代理。我们的目标是通过其相应的MFC问题证明这一异构系统的Marl问题的近似保证。我们考虑三种情景,所有代理商的奖励和转型动态分别被视为$(1)美元的职能,每班的所有课程,$(2)美元和$(3) $边际分布的整个人口。我们展示,在这些情况下,$ k $ -class marl问题可以通过mfc近似于$ e_1 = mathcal {o}(\ frac {\ sqrt {| \ mathcal {x} |} + \ sqrt {| \ mathcal {u} |}}}}}} {n _ {\ mathrm {pop}}} \ sum_ {k} \ sqrt {k})$,$ e_2 = \ mathcal {o}(\ left [\ sqrt {| \ mathcal {x} |} + \ sqrt {| \ mathcal {u} |} \ \ sum_ {k} \ frac {1} {\ sqrt {n_k}})$和$ e_3 = \ mathcal {o} \ left(\ left [\ sqrt {| \ mathcal {x} |} + \ sqrt {| \ mathcal {} |} \ leftle] \ left [\ frac {a} {n _ {\ mathrm {pop}}} \ sum_ {k \在[k]}} \ sqrt {n_k} + \ frac {n} {\ sqrt {n} {\ sqrt {n \ mathrm {pop}}} \右] \ over)$,其中$ a,b $是一些常数和$ | mathcal {x} |,| \ mathcal {u} | $是每个代理的状态和行动空间的大小。最后,我们设计了一种基于自然的梯度(NPG)基于NPG的算法,它在上面规定的三种情况下,可以在$ \ Mathcal {O}(E_J)$错误中收敛到$ \ Mathcal的示例复杂度{ o}(e_j ^ { - 3})$,j \ in \ {1,2,3 \} $。
translated by 谷歌翻译