Question answering models commonly have access to two sources of "knowledge" during inference time: (1) parametric knowledge - the factual knowledge encoded in the model weights, and (2) contextual knowledge - external knowledge (e.g., a Wikipedia passage) given to the model to generate a grounded answer. Having these two sources of knowledge entangled together is a core issue for generative QA models as it is unclear whether the answer stems from the given non-parametric knowledge or not. This unclarity has implications on issues of trust, interpretability and factuality. In this work, we propose a new paradigm in which QA models are trained to disentangle the two sources of knowledge. Using counterfactual data augmentation, we introduce a model that predicts two answers for a given question: one based on given contextual knowledge and one based on parametric knowledge. Our experiments on the Natural Questions dataset show that this approach improves the performance of QA models by making them more robust to knowledge conflicts between the two knowledge sources, while generating useful disentangled answers.
translated by 谷歌翻译
知识依赖任务通常使用两个知识来源:参数,在培训时间和上下文中学到的,作为推理时间的段落给出。要了解模型如何使用这些来源,我们正式化知识冲突问题,其中上下文信息与学到的信息相矛盾。分析流行模型的行为,我们衡量其过度依赖记忆信息(幻觉的原因),并揭示加剧这种行为的重要因素。最后,我们提出了一种简单的方法来减轻对参数知识的过度依赖,这最大限度地减少了幻觉,并提高了分配的推广4%-7%。我们的调查结果表明了从业者评估模型倾向于幻觉而不是阅读的重要性,并表明我们的缓解战略鼓励向不断发展的信息(即时间依赖查询)概括。为鼓励这些做法,我们发布了我们的框架,以产生知识冲突。
translated by 谷歌翻译
最近的开放式域问题回答表明,新颖的测试问题之间的模型性能和那些在很大程度上与培训问题重叠的模型性能存在很大差异。然而,目前尚不清楚新颖的问题的哪些方面使他们成为挑战。在进行系统泛化的研究时,我们根据三个类别介绍和注释问题,这些类别测量了不同的水平和概括的种类:培训设定重叠,组成泛化(Comp-Gen)和新颖的实体概括(新实体)。在评估六个流行的参数和非参数模型时,我们发现,对于既定的自然问题和TriviaQA数据集,即使是Comp-Gen /新颖实体的最强的模型性能也是13.1 / 5.4%和9.6 / 1.5%,而与此相比降低对于完整的测试集 - 表示这些类型的问题所带来的挑战。此外,我们表明,虽然非参数模型可以相对良好地处理含有新颖实体的问题,但它们与那些需要组成泛化的问题斗争。最后,我们发现关键问题是:来自检索组件的级联错误,问题模式的频率和实体的频率。
translated by 谷歌翻译
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), owing to their excellent understanding and generation abilities. Remarkably, what further sets these models apart is the massive amounts of world knowledge they internalize during pretraining. While many downstream applications provide the model with an informational context to aid its performance on the underlying task, how the model's world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model's memorized knowledge. This enables model predictions to be grounded in the context, which can then be used to update or correct specific model predictions without frequent retraining. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM (both pretrained and finetuned) could exhibit poor controllability and robustness, which do not scale with increasing model size. As a solution, we propose a novel method - Knowledge Aware FineTuning (KAFT) - to strengthen both controllability and robustness by incorporating counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.
translated by 谷歌翻译
Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with tasks requiring rich world knowledge, implying the limitations of relying solely on their parameters to encode a wealth of world knowledge. This paper aims to understand LMs' strengths and limitations in memorizing factual knowledge, by conducting large-scale knowledge probing experiments of 10 models and 4 augmentation methods on PopQA, our new open-domain QA dataset with 14k questions. We find that LMs struggle with less popular factual knowledge, and that scaling fails to appreciably improve memorization of factual knowledge in the tail. We then show that retrieval-augmented LMs largely outperform orders of magnitude larger LMs, while unassisted LMs remain competitive in questions about high-popularity entities. Based on those findings, we devise a simple, yet effective, method for powerful and efficient retrieval-augmented LMs, which retrieves non-parametric memories only when necessary. Experimental results show that this significantly improves models' performance while reducing the inference costs.
translated by 谷歌翻译
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dualencoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 1 * Equal contribution 1 The code and trained models have been released at https://github.com/facebookresearch/DPR.
translated by 谷歌翻译
Powerful generative models have led to recent progress in question generation (QG). However, it is difficult to measure advances in QG research since there are no standardized resources that allow a uniform comparison among approaches. In this paper, we introduce QG-Bench, a multilingual and multidomain benchmark for QG that unifies existing question answering datasets by converting them to a standard QG setting. It includes general-purpose datasets such as SQuAD for English, datasets from ten domains and two styles, as well as datasets in eight different languages. Using QG-Bench as a reference, we perform an extensive analysis of the capabilities of language models for the task. First, we propose robust QG baselines based on fine-tuning generative language models. Then, we complement automatic evaluation based on standard metrics with an extensive manual evaluation, which in turn sheds light on the difficulty of evaluating QG models. Finally, we analyse both the domain adaptability of these models as well as the effectiveness of multilingual models in languages other than English. QG-Bench is released along with the fine-tuned models presented in the paper https://github.com/asahi417/lm-question-generation, which are also available as a demo https://autoqg.net/.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
检索增强的代表在许多知识密集型的NLP任务中表现出最先进的表现,例如打开问题应答和事实验证。考虑到检索到的段落,这些模型训练以产生最终输出,这可能与原始查询无关,导致学习虚假线索或回答记忆。这项工作介绍了一种融入通道的证据性的方法 - 是否段落包含正确的证据来支持输出 - 培训发电机。我们介绍了一个多任务学习框架,共同生成最终输出并预测每个段落的证据性,利用新的任务不可行方法来获得{\ IT Silver}分证分性标签进行监督。我们在三个知识密集型任务中的五个数据集的实验表明,我们的新的证据引导发电机具有相同尺寸模型的直接对应的直接对应,并使Faviq-Ambig的最先进。我们将这些改进归因于辅助多任务学习和银证处分性挖掘技术。
translated by 谷歌翻译
Entities, as important carriers of real-world knowledge, play a key role in many NLP tasks. We focus on incorporating entity knowledge into an encoder-decoder framework for informative text generation. Existing approaches tried to index, retrieve, and read external documents as evidence, but they suffered from a large computational overhead. In this work, we propose an encoder-decoder framework with an entity memory, namely EDMem. The entity knowledge is stored in the memory as latent representations, and the memory is pre-trained on Wikipedia along with encoder-decoder parameters. To precisely generate entity names, we design three decoding methods to constrain entity generation by linking entities in the memory. EDMem is a unified framework that can be used on various entity-intensive question answering and generation tasks. Extensive experimental results show that EDMem outperforms both memory-based auto-encoder models and non-memory encoder-decoder models.
translated by 谷歌翻译
Fine-tuned language models use greedy decoding to answer reading comprehension questions with relative success. However, this approach does not ensure that the answer is a span in the given passage, nor does it guarantee that it is the most probable one. Does greedy decoding actually perform worse than an algorithm that does adhere to these properties? To study the performance and optimality of greedy decoding, we present exact-extract, a decoding algorithm that efficiently finds the most probable answer span in the context. We compare the performance of T5 with both decoding algorithms on zero-shot and few-shot extractive question answering. When no training examples are available, exact-extract significantly outperforms greedy decoding. However, greedy decoding quickly converges towards the performance of exact-extract with the introduction of a few training examples, becoming more extractive and increasingly likelier to generate the most probable span as the training set grows. We also show that self-supervised training can bias the model towards extractive behavior, increasing performance in the zero-shot setting without resorting to annotated examples. Overall, our results suggest that pretrained language models are so good at adapting to extractive question answering, that it is often enough to fine-tune on a small training set for the greedy algorithm to emulate the optimal decoding strategy.
translated by 谷歌翻译
预测任务标签和为其预测生成自由文本阐述的自律化模型可以实现与NLP系统更直观的交互。然而,这些模型目前正在接受大量人为的自由文本解释,每个任务都会阻碍更广泛的使用。我们建议使用少数培训例子研究更现实的自律化建立。我们出示2月 - 一个标准化的四个现有英语数据集和相关指标。我们通过2月份广泛探索自然语言提示来确定正确的提示方法。然后,通过使用此提示并缩放模型大小,我们证明了几次拍摄自合合理化的进展。我们展示了这项任务的完善房间仍然有充足的改进空间:人类注册人评估的生成解释的平均合理性最多为51%,而人类解释的合理性是76%。我们希望2月份与我们的拟议方法一起促使社区承担几次拍摄的自我合理化挑战。
translated by 谷歌翻译
Open-Domain Question Answering (ODQA) requires models to answer factoid questions with no context given. The common way for this task is to train models on a large-scale annotated dataset to retrieve related documents and generate answers based on these documents. In this paper, we show that the ODQA architecture can be dramatically simplified by treating Large Language Models (LLMs) as a knowledge corpus and propose a Self-Prompting framework for LLMs to perform ODQA so as to eliminate the need for training data and external knowledge corpus. Concretely, we firstly generate multiple pseudo QA pairs with background passages and one-sentence explanations for these QAs by prompting LLMs step by step and then leverage the generated QA pairs for in-context learning. Experimental results show our method surpasses previous state-of-the-art methods by +8.8 EM averagely on three widely-used ODQA datasets, and even achieves comparable performance with several retrieval-augmented fine-tuned models.
translated by 谷歌翻译
大多数在对话率问题回答中建模对话历史记录(CQA)的作品报告了共同CQA基准测试的主要结果。尽管现有模型在CQA排行榜上显示出令人印象深刻的结果,但尚不清楚它们在设置方面(有时是更现实的),训练数据大小(例如从大型集合到小型集合)和域是否有牢固的变化。在这项工作中,我们设计并进行了首次针对CQA的历史建模方法的大规模鲁棒性研究。我们发现,高基准分数不一定会转化为强大的鲁棒性,并且在不同的设置下,各种方法的性能都大不相同。配备了我们研究的见解,我们设计了一种基于及时的新型历史建模方法,并在各种环境中展示了其强大的鲁棒性。我们的方法灵感来自现有方法,这些方法突出了段落中的历史答案。但是,我们不是通过修改段落令牌嵌入来突出显示,而是直接在段落文本中添加文本提示。我们的方法简单,易于插入实际上任何模型,并且非常有效,因此我们建议它作为未来模型开发人员的起点。我们还希望我们的研究和见解将提高人们对以鲁棒性评估的重要性的认识,除了获得较高的排行榜分数,从而提高了更好的CQA系统。
translated by 谷歌翻译
知识密集型任务,例如开放域问题答案(QA),需要访问大量的世界知识或领域知识。知识密集型任务的一种常见方法是采用检索到阅读的管道,该管道首先从诸如Wikipedia之类的外部语料库中检索少数相关的上下文文档,然后预测在检索文档的条件下得到答案。在本文中,我们提出了一种新的观点,可以通过用大型语言模型生成器代替文档检索器来解决知识密集型任务。我们称我们的方法生成-Read Read(GenRead),该方法首先提示大型语言模型根据给定问题生成上下文文档,然后读取生成的文档以产生最终答案。此外,我们提出了一种基于聚类的提示方法,该方法选择了不同的提示,从而产生了涵盖不同观点的生成文档,从而更好地回忆了可接受的答案。我们对三个不同的知识密集任务进行了广泛的实验,包括开放域质量检查,事实检查和对话系统。值得注意的是,GenRead在Triviaqa和WebQ上实现了71.6和54.4的精确匹配分数,显着超过了最先进的检索到+4.0和+3.9的最先进的dpr-fid,而无需从任何外部知识源中检索任何文档。最后,我们证明可以通过结合检索和生成来进一步提高模型性能。
translated by 谷歌翻译
我们介绍了Art,这是一种新的语料库级自动编码方法,用于培训密集检索模型,不需要任何标记的培训数据。密集的检索是开放域任务(例如Open QA)的核心挑战,在该任务中,最先进的方法通常需要大量的监督数据集,并具有自定义的硬性采矿和肯定式示例。相反,艺术品仅需要访问未配对的投入和输出(例如问题和潜在的答案文件)。它使用新的文档 - 重新定义自动编码方案,其中(1)输入问题用于检索一组证据文档,并且(2)随后使用文档来计算重建原始问题的概率。基于问题重建的检索培训可以有效地学习文档和问题编码器,以后可以将其纳入完整的QA系统中,而无需任何进一步的填充。广泛的实验表明,ART在多个QA检索基准测试基准上获得最先进的结果,并且仅来自预训练的语言模型的一般初始化,从而消除了对标记的数据和特定于任务的损失的需求。
translated by 谷歌翻译
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge remain open research problems. Pre-trained models with a differentiable access mechanism to explicit nonparametric memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) -models which combine pre-trained parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages across the whole generated sequence, and another which can use different passages per token. We fine-tune and evaluate our models on a wide range of knowledge-intensive NLP tasks and set the state of the art on three open domain QA tasks, outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
translated by 谷歌翻译
Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.
translated by 谷歌翻译
Recent advances in open-domain question answering (ODQA) have demonstrated impressive accuracy on standard Wikipedia style benchmarks. However, it is less clear how robust these models are and how well they perform when applied to real-world applications in drastically different domains. While there has been some work investigating how well ODQA models perform when tested for out-of-domain (OOD) generalization, these studies have been conducted only under conservative shifts in data distribution and typically focus on a single component (ie. retrieval) rather than an end-to-end system. In response, we propose a more realistic and challenging domain shift evaluation setting and, through extensive experiments, study end-to-end model performance. We find that not only do models fail to generalize, but high retrieval scores often still yield poor answer prediction accuracy. We then categorize different types of shifts and propose techniques that, when presented with a new dataset, predict if intervention methods are likely to be successful. Finally, using insights from this analysis, we propose and evaluate several intervention methods which improve end-to-end answer F1 score by up to 24 points.
translated by 谷歌翻译