给定包含具有不同特征的不同对象的图像数据集,例如形状,大小,旋转和X-y位置;以及变异自动编码器(VAE);在VAE的隐藏空间向量中创建这些功能的分解编码是本文感兴趣的任务。DSPRITE数据集为本研究中所需的实验提供了所需的功能。在训练VAE与生成对抗网络(GAN)结合后,隐藏矢量的每个维度都被破坏,以探索每个维度中的分离。请注意,GAN用于提高输出图像重建的质量。
translated by 谷歌翻译
$ \ beta $ -vae是对变形的自身额外转换器的后续技术,提出了在VAE损失中的KL分歧项的特殊加权,以获得解除戒备的表示。即使在玩具数据集和有意义的情况下,甚至在玩具数据集上也是脆弱的学习,难以找到的难以找到的。在这里,我们调查原来的$ \β$ -VAE纸,并向先前获得的结果添加证据表明其缺乏可重复性。我们还进一步扩展了模型的实验,并在分析中包括进一步更复杂的数据集。我们还为$ \β$ -VAE模型实施了FID评分度量,并得出了对所获得的结果的定性分析。我们结束了关于可能进行的未来调查的简要讨论,以增加对索赔的更具稳健性。
translated by 谷歌翻译
变化自动编码器(VAE)最近已用于对复杂密度分布的无监督分离学习。存在许多变体,以鼓励潜在空间中的分解,同时改善重建。但是,在达到极低的重建误差和高度分离得分之间,没有人同时管理权衡。我们提出了一个普遍的框架,可以在有限的优化下应对这一挑战,并证明它在平衡重建时,它优于现有模型的最先进模型。我们介绍了三个可控的拉格朗日超级参数,以控制重建损失,KL差异损失和相关度量。我们证明,重建网络中的信息最大化等于在合理假设和约束放松下摊销过程中的信息最大化。
translated by 谷歌翻译
Disentangement是代表学习的有用财产,其提高了种子自动编码器(VAE),生成对抗模型等变形式自动编码器(VAE),生成的对抗模型及其许多变体的可解释性。通常在这种模型中,脱离性能的增加是具有发电质量的交易。在潜空间模型的背景下,这项工作提出了一种表示学习框架,通过鼓励正交的变化方向明确地促进解剖。所提出的目标是自动编码器错误项的总和以及特征空间中的主成分分析重建错误。这具有对具有在Stiefel歧管上的特征向量矩阵的限制内核机器的解释。我们的分析表明,这种结构通过将潜在空间中的主路线与数据空间的正交变化的方向匹配来促进解剖。在交替的最小化方案中,我们使用Cayley ADAM算法 - Stiefel歧管的随机优化方法以及ADAM优化器。我们的理论讨论和各种实验表明,拟议的模型在代质量和解除戒备的代表学习方面提高了许多VAE变体。
translated by 谷歌翻译
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon β-VAE by providing a better trade-off between disentanglement and reconstruction quality. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
translated by 谷歌翻译
带有变异自动编码器(VAE)的学习分解表示通常归因于损失的正则化部分。在这项工作中,我们强调了数据与损失的重建项之间的相互作用,这是VAE中解散的主要贡献者。我们注意到,标准化的基准数据集的构建方式有利于学习似乎是分解的表示形式。我们设计了一个直观的对抗数据集,该数据集利用这种机制破坏了现有的最新分解框架。最后,我们提供了一种解决方案,可以通过修改重建损失来实现分离,从而影响VAES如何感知数据点之间的距离。
translated by 谷歌翻译
We decompose the evidence lower bound to show the existence of a term measuring the total correlation between latent variables. We use this to motivate the β-TCVAE (Total Correlation Variational Autoencoder) algorithm, a refinement and plug-in replacement of the β-VAE for learning disentangled representations, requiring no additional hyperparameters during training. We further propose a principled classifier-free measure of disentanglement called the mutual information gap (MIG). We perform extensive quantitative and qualitative experiments, in both restricted and non-restricted settings, and show a strong relation between total correlation and disentanglement, when the model is trained using our framework.
translated by 谷歌翻译
我们提出了一种自我监督的方法,以解除高维数据变化的因素,该因素不依赖于基本变化概况的先验知识(例如,没有关于要提取单个潜在变量的数量或分布的假设)。在我们称为nashae的方法中,通过促进从所有其他编码元素中恢复的每个编码元素和恢复的元素的信息之间的差异,在标准自动编码器(AE)的低维潜在空间中完成了高维的特征分离。通过将其作为AE和回归网络合奏之间的Minmax游戏来有效地促进了分解,从而估算了一个元素,该元素以对所有其他元素的观察为条件。我们将我们的方法与使用现有的分离指标进行定量比较。此外,我们表明Nashae具有提高的可靠性和增加的能力来捕获学习潜在表示中的显着数据特征。
translated by 谷歌翻译
在没有监督信号的情况下学习简洁的数据表示是机器学习的基本挑战。实现此目标的一种突出方法是基于可能性的模型,例如变异自动编码器(VAE),以基于元元素来学习潜在表示,这是对下游任务有益的一般前提(例如,disentanglement)。但是,这种方法通常偏离原始的可能性体系结构,以应用引入的元优势,从而导致他们的培训不良变化。在本文中,我们提出了一种新颖的表示学习方法,Gromov-Wasserstein自动编码器(GWAE),该方法与潜在和数据分布直接匹配。 GWAE模型不是基于可能性的目标,而是通过最小化Gromov-Wasserstein(GW)度量的训练优化。 GW度量测量了在无与伦比的空间上支持的分布之间的面向结构的差异,例如具有不同的维度。通过限制可训练的先验的家庭,我们可以介绍元主题来控制下游任务的潜在表示。与现有基于VAE的方法的经验比较表明,GWAE模型可以通过更改先前的家族而无需进一步修改GW目标来基于元家庭学习表示。
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
高维数据的歧管假设假设数据是通过改变从低维潜在空间获得的一组参数而生成的。深层生成模型(DGM)被广泛用于以无监督的方式学习数据表示。 DGM使用瓶颈体系结构(例如变异自动编码器(VAE))参数化数据空间中的基础低维歧管。 VAE的瓶颈尺寸被视为取决于数据集的超参数,并在广泛调整后在设计时间固定。由于大多数实际数据集的内在维度尚不清楚,因此固有维度与选择为超参数的潜在维度之间存在不匹配。这种不匹配可能会对表示形式学习和样本生成任务的模型性能产生负面影响。本文提出了相关性编码网络(RENS):一种新型的基于VAE的概率VAE框架,该框架在潜在空间中使用自动相关性确定(ARD)来学习数据特定的瓶颈维度。每个潜在维度的相关性是直接从数据以及使用随机梯度下降的其他模型参数以及适合非高斯先验的重新聚集技巧的其他模型参数中学到的。我们利用深处的概念来捕获数据和潜在空间中的置换统计属性,以确定相关性。所提出的框架是一般且灵活的,可用于最先进的VAE模型,该模型利用正规化器在潜在空间中施加特定特征(例如,脱离)。通过对合成和公共图像数据集进行了广泛的实验,我们表明,所提出的模型了解了相关的潜在瓶颈维度,而不会损害样品的表示和发电质量。
translated by 谷歌翻译
Disonandlement被假设有利于许多下游任务。然而,学习解除不诚位表示的共同假设是数据生成因子在统计上独立。由于目前的方法几乎单独评估在这种理想的假设所在的玩具数据集上,我们在分层设置中调查它们的性能,其现实世界数据的相关特征。在这项工作中,我们介绍了一个具有分层结构的地面实际生成因子的数据集。我们使用这部小型数据集来评估最先进的自动统计文件的解剖模型的性能,并观察到分层模型在分层排列因子的解剖学方面通常优于单层VAE。
translated by 谷歌翻译
Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in the reasoning behind medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better-disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. Using the Attri-VAE approach we analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.
translated by 谷歌翻译
代表学习者认为,解开变异的因素已经证明是在解决各种现实世界的关切方面是重要的,如公平和可意识。最初由具有独立假设的无监督模型组成,最近,监督和相关特征较弱,但没有生成过程的因果关系。相比之下,我们在原因生成过程的制度下工作,因为生成因子是独立的,或者可能被一组观察或未观察到的混乱困惑。我们通过解散因果过程的概念对解开表示的分析。我们激励对新指标和数据集进行研究,以研究因果解剖和提出两个评估指标和数据集。我们展示了我们的指标捕获了解开了因果过程的探索。最后,我们利用我们的指标和数据集对艺术艺术状态的实证研究进行了脱扣代表学习者,以从因果角度来评估它们。
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
以无监督的方式从高维领域提取生成参数的能力是计算物理学中的非常理想尚未实现的目标。这项工作探讨了用于非线性尺寸降低的变形Autiachoders(VAES),其特定目的是{\ EM解散}的特定目标,以识别生成数据的独立物理参数。解除戒开的分解是可解释的,并且可以转移到包括生成建模,设计优化和概率减少阶级型建模的各种任务。这项工作的重大重点是使用VAE来表征解剖学,同时最小地修改经典的VAE损失功能(即证据下限)以保持高重建精度。损耗景观的特点是过度正常的局部最小值,其环绕所需的解决方案。我们通过在模型多孔流量问题中并列在模拟潜在分布和真正的生成因子中,说明了分解和纠缠符号之间的比较。展示了等级前瞻,促进了解除不诚实的表现的学习。在用旋转不变的前沿训练时,正则化损失不受潜在的旋转影响,从而学习非旋转不变的前锋有助于捕获生成因子的性质,改善解剖学。最后,表明通过标记少量样本($ O(1 \%)$)来实现半监督学习 - 导致可以一致地学习的准确脱屑潜在的潜在表示。
translated by 谷歌翻译
在面孔和机构的3D生成模型中学习解除一致,可解释和结构化的潜在代表仍然是一个开放的问题。当需要对身份特征的控制时,问题特别严重。在本文中,我们提出了一种直观但有效的自我监督方法来训练3D形变形自动化器(VAE),鼓励身份特征的解开潜在表示。通过在不同形状上交换任意特征来造成迷你批处理允许定义利用潜在表示中已知差异和相似性的损耗功能。在3D网眼上进行的实验结果表明,最先进的潜在解剖学方法无法解散面部和身体的身份特征。我们所提出的方法适当地解耦了这些特征的产生,同时保持了良好的表示和重建能力。
translated by 谷歌翻译
从文本描述中综合现实图像是计算机视觉中的主要挑战。当前对图像合成方法的文本缺乏产生代表文本描述符的高分辨率图像。大多数现有的研究都依赖于生成的对抗网络(GAN)或变异自动编码器(VAE)。甘斯具有产生更清晰的图像的能力,但缺乏输出的多样性,而VAE擅长生产各种输出,但是产生的图像通常是模糊的。考虑到gan和vaes的相对优势,我们提出了一个新的有条件VAE(CVAE)和条件gan(CGAN)网络架构,用于合成以文本描述为条件的图像。这项研究使用条件VAE作为初始发电机来生成文本描述符的高级草图。这款来自第一阶段的高级草图输出和文本描述符被用作条件GAN网络的输入。第二阶段GAN产生256x256高分辨率图像。所提出的体系结构受益于条件加强和有条件的GAN网络的残留块,以实现结果。使用CUB和Oxford-102数据集进行了多个实验,并将所提出方法的结果与Stackgan等最新技术进行了比较。实验表明,所提出的方法生成了以文本描述为条件的高分辨率图像,并使用两个数据集基于Inception和Frechet Inception评分产生竞争结果
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
基于线性对称性的分解(LSBD)的定义正式化了线性分解表示的概念,但目前尚无量化LSBD的指标。这样的度量对于评估LSBD方法至关重要,并与以前的分解理解相比。我们建议$ \ mathcal {d} _ \ mathrm {lsbd} $,一种数学上的声音指标,用于量化LSBD,并为$ \ mathrm {so}(so}(2)$ groups提供了实践实现。此外,从这个指标中,我们得出了LSBD-VAE,这是一种学习LSBD表示的半监督方法。我们通过证明(1)基于VAE的常见分解方法不学习LSBD表示,(2)LSBD-VAE以及其他最近的方法可以学习LSBD表示,仅需要有限的转换监督,我们可以在转换中学习LSBD表示,从而证明了我们指标的实用性。(3)LSBD表示也实现了现有的分离指标表达的各种理想属性。
translated by 谷歌翻译