数据驱动模型发现中的中央挑战是存在隐藏或潜伏的变量,这些变量不会直接测量,而是动态重要。 TAKENS的定理提供了在可能随时间延迟信息中增加这些部分测量的条件,导致吸引物,这是对原始全状态系统的扩散逻辑。然而,回到原始吸引子的坐标变换通常是未知的,并且学习嵌入空间中的动态仍然是几十年的开放挑战。在这里,我们设计自定义深度AutoEncoder网络,以学习从延迟嵌入空间的坐标转换到一个新的空间,其中可以以稀疏,封闭的形式表示动态。我们在Lorenz,R \“Ossler和Lotka-Volterra系统上,从单个测量变量的学习动态展示了这种方法。作为一个具有挑战性的例子,我们从混乱的水车视频中提取的单个标量变量中学到一个洛伦兹类似物得到的建模框架结合了深入的学习来揭示可解释建模的非线性动力学(SINDY)的揭示有效坐标和稀疏识别。因此,我们表明可以同时学习闭合模型和部分的坐标系观察到的动态。
translated by 谷歌翻译
从数据学习动态模型在工程设计,优化和预测中起着重要作用。使用经验知识或第一个原则描述复杂过程(例如,天气动态或反应流量)的动态的建筑模型是繁重或不可行的。此外,这些模型是高维但空间相关的。然而,观察到高保真模型的动态经常在低维歧管中发展。此外,还已知用于定义非线性动力学的足够平滑的矢量场,二次模型可以在适当的坐标系中准确地描述它,赋予非透露优化中的McCormick松弛思想。在这里,我们的目标是找到高保真动态数据的低维嵌入,确保了一个简单的二次模型来解释其动态。为此目的,这项工作利用深度学习来识别高保真动态系统的低维二次嵌入。精确地,我们使用autoencoder识别数据嵌入数据以具有嵌入的所需属性。我们还嵌入了漫游 - 库特塔方法,以避免时间衍生计算,这通常是一个挑战。我们说明了在描述流动动态和振荡管式反应器模型中产生的几个示例的方法的能力。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
我们提出了一种从数据模拟动态系统的数值方法。我们使用最近引入的方法可扩展的概率近似(SPA)从欧几里德空间到凸多台的项目点,并表示在新的低维坐标中的系统的预计状态,表示其在多晶硅中的位置。然后,我们介绍特定的非线性变换,以构建多特渗透中动力学的模型,并转换回原始状态空间。为了克服投影到低维层的潜在信息损失,我们在局部延迟嵌入定理的意义上使用记忆。通过施工,我们的方法产生稳定的模型。我们说明了在各种示例上具有多个连接组件的甚至复制混沌动力学和吸引子的方法的能力。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
我们建议采用统计回归作为投影操作员,以使数据驱动以数据为基础的Mori-Zwanzig形式主义中的运营商学习。我们提出了一种原则性方法,用于为任何回归模型提取Markov和内存操作员。我们表明,线性回归的选择导致了基于Mori的投影操作员最近提出的数据驱动的学习算法,这是一种高阶近似Koopman学习方法。我们表明,更具表现力的非线性回归模型自然填补了高度理想化和计算有效的MORI投影操作符和最佳迄今为止计算上最佳的Zwanzig投影仪之间的差距。我们进行了数值实验,并提取了一系列基于回归的投影的运算符,包括线性,多项式,样条和基于神经网络的回归,随着回归模型的复杂性的增加而显示出渐进的改进。我们的命题提供了一个通用框架来提取内存依赖性校正,并且可以轻松地应用于文献中固定动力学系统的一系列数据驱动的学习方法。
translated by 谷歌翻译
所有物理定律都被描述为状态变量之间的关系,其提供相关系统动态的完整和非冗余描述。然而,尽管计算功率和AI的普及,但识别隐藏状态变量本身的过程已经抵制了自动化。用于建模物理现象的大多数数据驱动方法仍然假设观察到的数据流已经对应于相关状态变量。关键挑战是仅给予高维观察数据,从头开始识别可能的状态变量集。在这里,我们提出了一种新的原理,用于确定观察到的系统可能具有多少状态变量,以及这些变量可以直接来自视频流。我们展示了使用各种物理动态系统的视频录制的这种方法的有效性,从弹性双摆到火焰。如果没有任何相关的物理知识,我们的算法发现观察到的动态的内在尺寸,并识别候选州变量集。我们建议这种方法可以帮助促进对越来越复杂的系统的理解,预测和控制。项目网站是:https://www.cs.columbia.edu/~bchen/nebural-tate-variables
translated by 谷歌翻译
数据科学和机器学习的进展已在非线性动力学系统的建模和模拟方面取得了重大改进。如今,可以准确预测复杂系统,例如天气,疾病模型或股市。预测方法通常被宣传为对控制有用,但是由于系统的复杂性,较大的数据集的需求以及增加的建模工作,这些细节经常没有得到解答。换句话说,自治系统的替代建模比控制系统要容易得多。在本文中,我们介绍了Quasimodo框架(量化模拟模拟模拟 - 优化),以将任意预测模型转换为控制系统,从而使数据驱动的替代模型的巨大进步可访问控制系统。我们的主要贡献是,我们通过自动化动力学(产生混合企业控制问题)来贸易控制效率,以获取任意,即使用的自主替代建模技术。然后,我们通过利用混合成员优化的最新结果来恢复原始问题的复杂性。 Quasimodo的优点是数据要求在控制维度方面的线性增加,性能保证仅依赖于使用的预测模型的准确性,而控制理论中的知识知识要求很少来解决复杂的控制问题。
translated by 谷歌翻译
AutoEncoder技术在减少秩序建模中发现越来越常见的用途作为创建潜在空间的手段。这种缩小的订单表示为与时间序列预测模型集成时的非线性动力系统提供了模块化数据驱动建模方法。在这封信中,我们提出了一个非线性适当的正交分解(POD)框架,它是一个端到端的Galerkin的模型,组合AutoEncoders,用于动态的长短期内存网络。通过消除由于Galerkin模型的截断导致的投影误差,所提出的非流体方法的关键推动器是在POD系数的全级扩展和动态发展的潜空间之间的非线性映射的运动结构。我们测试我们的模型减少对流主导系统的框架,这通常是针对减少订单模型的具有挑战性。我们的方法不仅提高了准确性,而且显着降低了培训和测试的计算成本。
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
根据数据得出的模型的顺序/维度通常受观测值的数量或受监视系统(传感节点)的上下文的限制。对于结构系统(例如,民用或机械结构)尤其如此,这通常是高维本质上的。在物理知识的机器学习范围内,本文提出了一个框架(称为神经模态odes),以将基于物理学的建模与深度学习(尤其是神经通用差分方程 - 神经odes)整合在一起,以建模受监视和高的动态。 - 维工程系统。在这种启动探索中,我们将自己限制在线性或轻度非线性系统中。我们提出了一种结构,该体系结构将变异自动编码器的动态版本与物理信息的神经odes(Pi-神经odes)融合在一起。作为自动编码器的一部分,编码器从观测数据的前几个项目到潜在变量的初始值学习了抽象映射,从而驱动通过物理知识的神经odes学习嵌入式动力学,并施加\ textit {模态模型}该潜在空间的结构。所提出的模型的解码器采用了从应用于基于物理学模型的线性化部分的本征分析中得出的本征模:一种隐含携带自由度(DOFS)之间的空间关系的过程。该框架在数值示例中得到了验证,以及一个缩放的电缆固定桥的实验数据集,在该数据集中,学到的混合模型被证明胜过纯粹基于物理的建模方法。我们进一步显示了在虚拟传感的上下文中,即从空间稀疏数据中恢复了未衡量的DOF中的广义响应量。
translated by 谷歌翻译
在研究和实践中,近几十年来,机器学习(ML)取得了巨大的成功。在网络物理系统(CPS)中,ML例如用于优化系统,以检测异常或识别系统故障的根本原因。然而,现有算法遭受了两个主要缺点:(i)他们很难被人类专家解释。 (ii)将一个系统转移到另一个系统(类似)系统的结果通常是一个挑战。概念学习,或代表学习(Repl),是两个缺点的解决方案;模仿人的解决方案方法来解释能力和转移能力:通过学习诸如物理量或系统状态的一般概念,模型由人类解释。此外,这种抽象水平的概念通常可以应用于各种不同的系统。现代ML方法已广泛用于CPS,但到目前为止,概念学习和转移学习几乎不使用。在本文中,我们提供了关于在时间序列数据中学习物理概念的方法的当前研究状态的概述,这是CPS的传感器数据的主要形式。我们还使用三箱系统的示例来分析来自现有技术的最重要的方法。基于这些混凝土实现1,我们讨论了方法的优缺点,并显示了哪些目的,并且可以在其中使用它们的条件。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译