The emergence of variational quantum applications has led to the development of automatic differentiation techniques in quantum computing. Recently, Zhu et al. (PLDI 2020) have formulated differentiable quantum programming with bounded loops, providing a framework for scalable gradient calculation by quantum means for training quantum variational applications. However, promising parameterized quantum applications, e.g., quantum walk and unitary implementation, cannot be trained in the existing framework due to the natural involvement of unbounded loops. To fill in the gap, we provide the first differentiable quantum programming framework with unbounded loops, including a newly designed differentiation rule, code transformation, and their correctness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic programming is also discussed. We implement our framework with Python and Q#, and demonstrate a reasonable sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in automatically identifying close-to-optimal parameters for several parameterized quantum applications.
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
量子Gibbs状态的制备是量子计算的重要组成部分,在各种区域具有广泛的应用,包括量子仿真,量子优化和量子机器学习。在本文中,我们提出了用于量子吉布斯状态准备的变分杂化量子典型算法。我们首先利用截短的泰勒系列来评估自由能,并选择截短的自由能量作为损耗功能。然后,我们的协议训练参数化量子电路以学习所需的量子吉布斯状态。值得注意的是,该算法可以在配备有参数化量子电路的近期量子计算机上实现。通过执行数值实验,我们显示浅参数化电路,只有一个额外的量子位训练,以便准备诸如高于95%的保真度的insing链和旋转链Gibbs状态。特别地,对于ising链模型,我们发现,只有一个参数和一个额外的qubit的简化电路ansatz可以训练,以在大于2的逆温度下实现吉布斯状态准备中的99%保真度。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
我们研究了学习哈密顿$ h $ to precision $ \ varepsilon $的问题,假设我们将获得其gibbs state $ \ rho = \ exp( - \ beta h)/\ operatoratorname {tr}(\ exp(\ exp)( - \ beta h))$在已知的反温度$ \ beta $处。 Anshu,Arunachalam,Kuwahara和Soleimanifar(Nature Physics,2021,Arxiv:2004.07266)最近研究了此问题的样品复杂性(需要$ \ rho $的副本数量)。在高温(低$ \ beta $)制度中,他们的算法具有样品复杂性poly poly $(n,1/\ beta,1/\ varepsilon)$,并且可以用多项式但次优的时间复杂性实现。在本文中,我们研究了更一般的哈密顿人的同样问题。我们展示了如何学习哈密顿量的系数到错误$ \ varepsilon $带有样本复杂性$ s = o(\ log n/(\ beta \ varepsilon)^{2})$和样本大小的时间复杂性,$ o(s n)$。此外,我们证明了匹配的下限,表明我们算法的样品复杂性是最佳的,因此我们的时间复杂性也是最佳的。在附录中,我们证明,几乎可以使用相同的算法来从实时进化的统一$ e^{ - it H} $中学习$ h $,其中具有相似的示例和时间复杂性的小$ t $制度。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
我们使用对单个的,相同的$ d $维状态的相同副本进行的测量来研究量子断层扫描和阴影断层扫描的问题。我们首先因Haah等人而重新审视已知的下限。 (2017年)在痕量距离上具有准确性$ \ epsilon $的量子断层扫描,当测量选择与先前观察到的结果无关(即它们是非适应性的)时。我们简要地证明了这一结果。当学习者使用具有恒定结果数量的测量值时,这会导致更强的下限。特别是,这严格确定了民间传说的最佳性``Pauli phymography''算法的样本复杂性。我们还得出了$ \ omega(r^2 d/\ epsilon^2)$和$ \ omega(r^2 d/\ epsilon^2)的新颖界限( R^2 d^2/\ epsilon^2)$用于学习排名$ r $状态,分别使用任意和恒定的结果测量,在非适应性情况下。除了样本复杂性,对于学习量子的实际意义,是一种实际意义的资源状态是算法使用的不同测量值的数量。我们将下限扩展到学习者从固定的$ \ exp(o(d))$测量的情况下进行自适应测量的情况。这特别意味着适应性。没有使用可有效实现的单拷贝测量结果给我们任何优势。在目标是预测给定的可观察到给定序列的期望值的情况下,我们还获得了类似的界限,该任务被称为阴影层析成像。在适应性的情况下单拷贝测量可通过多项式大小的电路实现,我们证明了基于计算给定可观察物的样本平均值的直接策略是最佳的。
translated by 谷歌翻译
已经假设量子计算机可以很好地为机器学习中的应用提供很好。在本作工作中,我们分析通过量子内核定义的函数类。量子计算机提供了有效地计算符合难以计算的指数大密度运算符的内部产品。然而,具有指数大的特征空间使得普遍化的问题造成泛化的问题。此外,能够有效地评估高尺寸空间中的内部产品本身不能保证量子优势,因为已经是经典的漫步核可以对应于高或无限的维度再现核Hilbert空间(RKHS)。我们分析量子内核的频谱属性,并发现我们可以期待优势如果其RKHS低维度,并且包含很难经典计算的功能。如果已知目标函数位于该类中,则这意味着量子优势,因为量子计算机可以编码这种电感偏压,而没有同样的方式对功能类进行经典有效的方式。但是,我们表明查找合适的量子内核并不容易,因为内核评估可能需要指数倍数的测量。总之,我们的信息是有点令人发声的:我们猜测量子机器学习模型只有在我们设法将关于传递到量子电路的问题的知识编码的情况下,才能提供加速,同时将相同的偏差置于经典模型。难的。然而,在学习由量子流程生成的数据时,这些情况可能会被典雅地发生,但对于古典数据集来说,它们似乎更难。
translated by 谷歌翻译
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in the quantum simulation and quantum chemistry.
translated by 谷歌翻译
已广泛研究了确定量子状态(例如保真度度量)相似性的有效度量。在本文中,我们解决了可以定义可以\ textit {有效估计}的量子操作的相似性度量的问题。给定了两个量子操作,$ u_1 $和$ u_2 $,以其电路表格表示,我们首先开发一个量子采样电路,以估算其差异的归一化schatten 2-norm($ \ | | | | | | U_1-U_2 \ | _ {s_2} $)使用精确$ \ epsilon $,仅使用一个干净的量子和一个经典的随机变量。我们证明了一个poly $(\ frac {1} {\ epsilon})$ umper bound在样品复杂性上,该界限与量子系统的大小无关。然后,我们证明这种相似性度量与使用量子状态的常规保真度度量($ f $)直接相关。 u_1-u_2 \ | _ {s_2} $足够小(例如$ \ leq \ frac {\ epsilon} {1+ \ sqrt {2(1/\ delta -1)} $)处理相同的随机和均匀选择的纯状态,$ | \ psi \ rangle $,如有需要($ f({{u} _1 | \ psi \ rangle,{u} _2 | \ psi \ wangle)\ geq 1 - \ epsilon $),概率超过$ 1- \ delta $。我们为量子电路学习任务提供了这种有效的相似性度量估计框架的示例应用,例如找到给定统一操作的平方根。
translated by 谷歌翻译
Efficient characterization of highly entangled multi-particle systems is an outstanding challenge in quantum science. Recent developments have shown that a modest number of randomized measurements suffices to learn many properties of a quantum many-body system. However, implementing such measurements requires complete control over individual particles, which is unavailable in many experimental platforms. In this work, we present rigorous and efficient algorithms for learning quantum many-body states in systems with any degree of control over individual particles, including when every particle is subject to the same global field and no additional ancilla particles are available. We numerically demonstrate the effectiveness of our algorithms for estimating energy densities in a U(1) lattice gauge theory and classifying topological order using very limited measurement capabilities.
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
经典的阴影协议,最近由黄,Kueng和Preskill [Nat。物理。 16,1050(2020)]是一种量子古典方案,用于估计未知量子状​​态的性质。与完整的量子状态断层扫描不同,该协议可以在近期量子硬件上实施,并且需要很少的量子测量来以很高的成功概率做出许多预测。在本文中,我们研究噪声对经典阴影协议的影响。特别是,我们考虑了该方案中涉及的量子电路受到各种已知噪声通道的影响,并根据局部和全局噪声的阴影静音分析得出样本复杂性的分析上限。此外,通过修改无噪声协议的经典后处理步骤,我们定义了一个新的估计器,该估计量在存在噪声的情况下保持公正。作为应用,我们表明我们的结果可用于在去极化噪声和振幅阻尼的情况下证明严格的样品复杂性上限。
translated by 谷歌翻译
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
我们提出了第一近最优量子算法,用于估计欧几里德的规范,与有限均值和协方差的矢量值随机变量的平均值。我们的结果旨在将多元子高斯估计的理论延伸到量子设置。与经典上不同,如果任何单变量估计器都可以在维度中最多的对数开销转换为多变量估计器,则不会在量子设置中证明类似的结果。实际上,当样品复杂性小于尺寸时,Heinrich排除了平均估计问题的量子优势。我们的主要结果是表明,在这种低精度的方案之外,有一个量子估计值优于任何经典估算器。我们的方法比单变量设置大致涉及,大多数量子估计人员依赖于相位估计。我们利用各种额外的算法技术,如幅度放大,伯恩斯坦 - Vazirani算法和量子奇异值转换。我们的分析还使用多元截断统计的浓度不等式。我们以前在文献中出现的两个不同输入模型中的Quantum估算器。第一个提供对随机变量的二进制表示的相干访问,并且它包含经典设置。在第二模型中,随机变量直接编码到量子寄存器的相位中。该模型在许多量子算法中自然出现,但常常具有古典样品通常是无与伦比的。我们将我们的技术调整为这两个设置,我们表明第二种模型严格较弱,以解决平均估计问题。最后,我们描述了我们的算法的几个应用,特别是在测量通勤可观察到的期望值和机器学习领域时。
translated by 谷歌翻译
我们研究量子存储器的力量,以了解量子系统和动态的学习性质,这在物理和化学方面具有重要意义。许多最先进的学习算法需要访问额外的外部量子存储器。虽然这种量子存储器不需要先验,但在许多情况下,不利用量子存储器的算法需要比那些更多样的数据。我们表明,这种权衡在各种学习问题中是固有的。我们的结果包括以下内容:(1)我们显示以$ M $ -Qubit状态Rho执行暗影断层扫描,以M $观察到,任何没有量子存储器的算法需要$ \ omega(\ min(m,2 ^ n) )最坏情况下Rho的标准。达到对数因子,这与[HKP20]的上限匹配,完全解决了[AAR18,AR19]中的打开问题。 (2)我们在具有和不具有量子存储器之间的算法之间建立指数分离,用于纯度测试,区分扰扰和去极化的演变,以及在物理动态中揭示对称性。我们的分离通过允许更广泛的无量子存储器的算法来改善和概括[ACQ21]的工作。 (3)我们提供量子存储器和样本复杂性之间的第一个权衡。我们证明,估计所有$ N $ -Qubit Pauli可观察到的绝对值,Qumum Memory的$ K <N $ Qubits的算法需要至少$ \ omega(2 ^ {(nk)/ 3})$样本,但在那里是使用$ n $ -Qubit量子存储器的算法,该算法只需要$ o(n)$ samples。我们展示的分离足够大,并且可能已经是显而易见的,例如,数十Qubits。这提供了一种具体的路径,朝着使用量子存储器学习算法的实际优势。
translated by 谷歌翻译
已经提出了一些用于量子神经网络(QNN)的体系结构,目的是有效地执行机器学习任务。对于特定的QNN结构,迫切需要进行严格的缩放结果,以了解哪种(如果有的话)可以大规模训练。在这里,我们为最近提出的架构分析了梯度缩放(以及训练性),该体系结构称为耗散QNNS(DQNNS),其中每层的输入量子位在该图层的输出处丢弃。我们发现DQNNS可以表现出贫瘠的高原,即在量子数量中呈指数级消失的梯度。此外,我们在不同条件下(例如不同的成本函数和电路深度)的DQNN梯度的缩放范围提供定量界限,并表明并非总是可以保证可训练性。
translated by 谷歌翻译