多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
矩阵值数据在许多应用中越来越普遍。这种类型数据的大多数现有的聚类方法都是针对均值模型定制的,并且不考虑特征的依赖结构,这可能非常有信息,尤其是在高维设置中。要从群集结构中提取信息以进行群集,我们提出了一种以矩阵形式排列的特征的新潜在变量模型,其中一些未知的隶属矩阵表示行和列的群集。在该模型下,我们进一步提出了一类使用加权协方差矩阵的差异作为异化测量的分层聚类算法。从理论上讲,我们表明,在温和条件下,我们的算法在高维设置中达到聚类一致性。虽然这种一致性结果为我们的算法具有广泛的加权协方差矩阵,但该结果的条件取决于重量的选择。为了调查重量如何影响我们算法的理论性能,我们在我们的潜在变量模型下建立了群集的最小限制。鉴于这些结果,我们在使用此权重的意义上识别最佳权重,保证我们的算法在某些集群分离度量的大小方面是最佳的最佳速率。还讨论了我们具有最佳权重的算法的实际实现。最后,我们进行仿真研究以评估我们算法的有限样本性能,并将该方法应用于基因组数据集。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
我们建议基于张量CP分解模拟矩阵时间序列。而不是使用作为估计CP分解的标准做法的迭代算法,我们提出了一种基于由底层过程的串行依赖结构构成的广义特征分析的新的和单遍估计过程。新程序的一个关键思想是将在具有全排序矩阵的秩减少矩阵方面将概要的矩阵预定为下方,以避免以前的前者的复杂性可以为零,有限和无限。在没有实践性的情况下,在一般环境下建立了渐近理论。例如,图2示出了CP - 分解中的所有组件系数矢量,根据时间序列尺寸与样本大小之间的相对大小一致地估计CP分解中的所有组件系数矢量。建议的模型和估计方法进一步用模拟和真实数据说明;显示有效维度降低模型和预测矩阵时间序列。
translated by 谷歌翻译
我们考虑在离散观察点上测量的功能数据。通常通过额外的噪声测量这种数据。我们在本文中探讨了这种类型数据的因子结构。我们表明潜伏信号可以归因于相应因子模型的公共组件,并且可以通过来自因子模型文献的方法借用方法来估计。我们还表明,在采取这种多变量而不是“功能”的角度之后,可以准确地估计在功能数据分析中发挥关键作用的主成分。除了估计问题之外,我们还解决了对IID噪声的零假设的测试。虽然这个假设在很大程度上在文献中主要是普遍存在的,但我们认为它通常不切实际,并且不受残留分析的支持。
translated by 谷歌翻译
嵌套模拟涉及通过模拟估算条件期望的功能。在本文中,我们提出了一种基于内核RIDGE回归的新方法,利用作为多维调节变量的函数的条件期望的平滑度。渐近分析表明,随着仿真预算的增加,所提出的方法可以有效地减轻了对收敛速度的维度诅咒,只要条件期望足够平滑。平滑度桥接立方根收敛速度之间的间隙(即标准嵌套模拟的最佳速率)和平方根收敛速率(即标准蒙特卡罗模拟的规范率)。我们通过来自投资组合风险管理和输入不确定性量化的数值例子来证明所提出的方法的性能。
translated by 谷歌翻译
稳定性选择(Meinshausen和Buhlmann,2010)通过返回许多副页面一致选择的功能来使任何特征选择方法更稳定。我们证明(在我们的知识中,它的知识,它的第一个结果),对于包含重要潜在变量的高度相关代理的数据,套索通常选择一个代理,但与套索的稳定性选择不能选择任何代理,导致比单独的套索更糟糕的预测性能。我们介绍集群稳定性选择,这利用了从业者的知识,即数据中存在高度相关的集群,从而产生比此设置中的稳定性选择更好的特征排名。我们考虑了几种特征组合方法,包括在每个重要集群中占据各个重要集群中的特征的加权平均值,其中重量由选择集群成员的频率决定,我们显示的是比以前的提案更好地导致更好的预测模型。我们呈现来自Meinshausen和Buhlmann(2010)和Shah和Samworth(2012)的理论担保的概括,以表明集群稳定选择保留相同的保证。总之,集群稳定性选择享有两个世界的最佳选择,产生既稳定的稀疏选择集,具有良好的预测性能。
translated by 谷歌翻译
本文研究了无限二维希尔伯特空间之间线性算子的学习。训练数据包括希尔伯特空间中的一对随机输入向量以及在未知的自我接合线性运算符下的嘈杂图像。假设操作员在已知的基础上是对角线化的,则该工作解决了给定数据估算操作员特征值的等效反问题。采用贝叶斯方法,理论分析在无限的数据限制中建立了后部收缩率,而高斯先验者与反向问题的正向图没有直接相关。主要结果还包括学习理论的概括错误保证了广泛的分配变化。这些收敛速率分别量化了数据平滑度和真实特征值衰减或生长的影响,分别是紧凑或无界操作员对样品复杂性的影响。数值证据支持对角线和非对角性环境中的理论。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
协方差估计在功能数据分析中普遍存在。然而,对多维域的功能观测的情况引入了计算和统计挑战,使标准方法有效地不适用。为了解决这个问题,我们将“协方差网络”(CoVNet)介绍为建模和估算工具。 Covnet模型是“Universal” - 它可用于近似于达到所需精度的任何协方差。此外,该模型可以有效地拟合到数据,其神经网络架构允许我们在实现中采用现代计算工具。 Covnet模型还承认了一个封闭形式的实体分解,可以有效地计算,而不构建协方差本身。这有助于在CoVnet的背景下轻松存储和随后操纵协方差。我们建立了拟议估计者的一致性,得出了汇合速度。通过广泛的仿真研究和休息状态FMRI数据的应用,证明了所提出的方法的有用性。
translated by 谷歌翻译
高维非正交掺入张量的CP分解是许多学科的广泛应用的重要问题。然而,以前的理论保证的工作通常在CP组分的基础载体上承担限制性的不连贯条件。在本文中,我们提出了新的计算高效的复合PCA和并发正交化算法,以便在轻度不连结条件下的理论保证。复合PCA将主成分或奇异值分解应用于张量数据的矩阵,以获得奇异矢量,然后在第一步骤中获得的奇异载体的基质折叠。它可以用作Tensor CP分解的任何迭代优化方案的初始化。并发正交化算法通过将突起同时施加到其他模式中的其他模式所产生的空格的正交补充,迭代地估计张量的每个模式的基础向量。旨在改善具有低或中等高CP等级的张量的交替的最小二乘估计器和其他形式的高阶正交迭代,并且当任何给定的初始估计器的错误被小常数界定时,它保证快速收敛。我们的理论调查为两种提出的算法提供了估算准确性和收敛速率。我们对合成数据的实施表明了我们对现有方法的方法的显着实际优势。
translated by 谷歌翻译
本文研究了多任务高维线性回归模型,其中不同任务之间的噪声是相关的,在中等高的维度状态下,样本量$ n $和dimension $ p $是相同的订单。我们的目标是估计噪声随机向量的协方差矩阵,或等效地在任何两个任务上的噪声变量的相关性。将回归系数视为滋扰参数,我们利用多任务弹性网络和多任务套索估计器来估计滋扰。通过准确理解平方残留矩阵的偏置并纠正这种偏见,我们开发了一个新颖的噪声协方差估计器,该噪声协方差以frobenius norm的收敛,以$ n^{ - 1/2} $为$ n^{ - 1/2} $。这个新颖的估计器是有效的计算。在适当的条件下,提出的噪声协方差估计器的收敛速率与事先知道多任务模型回归系数的“甲骨文”估计器相同。本文获得的FROBENIUS误差界限还说明了该新估计量的优势,而不是试图估计滋扰的方法估计器。作为我们技术的副产品,我们获得了多任务弹性NET和多任务套索估计器的概括误差的估计。进行了广泛的仿真研究,以说明该方法的数值性能。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
我们考虑一个高维模型,其中观察到时间和空间的变量。该模型由包含时间滞后的时空回归和因变量的空间滞后组成。与古典空间自回归模型不同,我们不依赖于预定的空间交互矩阵,但从数据中推断所有空间交互。假设稀疏性,我们通过惩罚一组Yule-Walker方程来估计完全数据驱动的空间和时间依赖。这种正则化可以留下非结构化,但我们还提出了当观察结果源自空间网格(例如卫星图像)时定制的收缩程序。推导有限的样本误差界限,并且在渐近框架中建立估计一致性,其中样本大小和空间单元的数量共同偏离。外源性变量也可以包括在内。与竞争程序相比,仿真练习表现出强大的有限样本性能。作为一个实证应用,我们模型卫星测量了伦敦的No2浓度。我们的方法通过竞争力的基准提供预测,我们发现了强烈的空间互动的证据。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
对比学习在各种自我监督的学习任务中取得了最先进的表现,甚至优于其监督的对应物。尽管其经验成功,但对为什么对比学习作品的理论认识仍然有限。在本文中,(i)我们证明,对比学习胜过AutoEncoder,一种经典无监督的学习方法,适用于特征恢复和下游任务;(ii)我们还说明标记数据在监督对比度学习中的作用。这为最近的发现提供了理论支持,即对标签对比学习的结果提高了域名下游任务中学识表的表现,但它可能会损害转移学习的性能。我们通过数值实验验证了我们的理论。
translated by 谷歌翻译