Entity Alignment (EA), which aims to detect entity mappings (i.e. equivalent entity pairs) in different Knowledge Graphs (KGs), is critical for KG fusion. Neural EA methods dominate current EA research but still suffer from their reliance on labelled mappings. To solve this problem, a few works have explored boosting the training of EA models with self-training, which adds confidently predicted mappings into the training data iteratively. Though the effectiveness of self-training can be glimpsed in some specific settings, we still have very limited knowledge about it. One reason is the existing works concentrate on devising EA models and only treat self-training as an auxiliary tool. To fill this knowledge gap, we change the perspective to self-training to shed light on it. In addition, the existing self-training strategies have limited impact because they introduce either much False Positive noise or a low quantity of True Positive pseudo mappings. To improve self-training for EA, we propose exploiting the dependencies between entities, a particularity of EA, to suppress the noise without hurting the recall of True Positive mappings. Through extensive experiments, we show that the introduction of dependency makes the self-training strategy for EA reach a new level. The value of self-training in alleviating the reliance on annotation is actually much higher than what has been realised. Furthermore, we suggest future study on smart data annotation to break the ceiling of EA performance.
translated by 谷歌翻译
Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
translated by 谷歌翻译
实体对齐(EA)的目的是匹配引用相同现实世界对象的等效实体,并且是知识图(kg)融合的关键步骤。大多数神经EA模型由于其过度消耗GPU记忆和时间而无法应用于大型现实生活中。一种有希望的解决方案是将大型EA任务分为几个子任务,以便每个子任务只需要匹配原始kg的两个小子图。但是,在不失去效力的情况下分配EA任务是一个挑战。现有方法显示了潜在映射的覆盖范围较低,上下文图中的证据不足以及子任务的大小不同。在这项工作中,我们设计了具有高质量任务部门的大规模EA的分区框架。为了在EA子任务中包括最初存在于大型EA任务中的潜在映射的很大比例,我们设计了一种对应的发现方法,该方法利用了EA任务的局部原理和训练有素的EA模型的力量。我们的对手发现方法独有的是潜在映射的机会的明确建模。我们还介绍了传递机制的证据,以量化上下文实体的信息性,并找到对子任务大小的灵活控制的最有用的上下文图。广泛的实验表明,与替代性的最先进的解决方案相比,分区的EA性能更高。
translated by 谷歌翻译
实体对齐是将知识图(KGS)与多个源集成的重要步骤。以前的实体对齐尝试已经探索了不同的kg结构,例如基于邻域和基于路径的上下文,以学习实体嵌入物,但它们受到捕获多上下文特征的限制。此外,大多数方法直接利用嵌入相似性以确定实体对齐,而不考虑实体和关系之间的全局互动。在这项工作中,我们提出了一个明智的多上下文实体对齐(IMEA)模型来解决这些问题。特别是,我们引入变压器以灵活地捕获关系,路径和邻域背景,并根据嵌入相似度和关系/实体功能设计整体推理以估计对齐概率。从整体推理获得的对准证据通过所提出的软标签编辑进一步注入变压器,以通知嵌入学习。与现有的最先进的实体对准方法相比,若干基准数据集上的实验结果证明了IMEA模型的优越性。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
实体对齐旨在发现在不同知识图(kg)之间具有相同含义的独特等效实体对。对于知识整合或融合,这是一项令人信服但具有挑战性的任务。现有模型主要集中于将KGS投射到潜在的嵌入空间中,以捕获实体对齐实体之间的固有语义。但是,一致性冲突的不利影响在训练过程中被大大忽略了,从而限制了实体对准绩效。为了解决这个问题,我们提出了一种新颖的冲突感知伪标签,该标签通过最佳运输模型(CPL-OT)进行实体对齐。 CPL-OT的关键思想是迭代的伪标签对齐对,并通过冲突意识到的最佳运输建模授权,以提高实体对齐的精度。 CPL-OT由两个关键组成部分 - 实体嵌入学习,其中包括全球本地聚集和迭代冲突感知的伪标签 - 相互互相加强。为了减轻伪标签期间的一致性冲突,我们建议使用最佳运输(OT)作为有效手段,以保证两公斤之间的一对一实体对齐,而总体运输成本最少。运输成本被计算为通过图形卷积获得的实体嵌入之间的整流距离,并用全球级别的语义增强。基准数据集的广泛实验表明,在有或没有先前对齐种子的两个设置下,CPL-OT可以显着超过最先进的基准。
translated by 谷歌翻译
实体对齐是知识图(kg)集成中的基本且至关重要的技术。多年来,对实体一致性的研究一直存在于KG是静态的假设,该假设忽略了现实世界KG的生长本质。随着KG的成长,先前的一致性结果面临需要重新审视的,而新实体对齐等待被发现。在本文中,我们建议并深入研究现实但未开发的设置,称为持续实体对齐。为了避免在新实体和三元组来时对整个KGS进行整个模型,我们为此任务提供了一种持续的对齐方法。它基于实体邻接,重建实体的表示,使其能够使用其现有邻居快速而有归纳的新实体生成嵌入。它选择并重播部分预先对准的实体对,仅训练一部分KG,同时提取可信赖的知识对准知识增强。由于不可避免地要包含与以前的作品不同的不可匹配的实体,因此所提出的方法采用双向最近的邻居匹配来找到新的实体对齐并更新旧的对齐。此外,我们还通过模拟多语言dbpedia的增长来构建新数据集。广泛的实验表明,我们的持续比对方法比基于再培训或归纳学习的基准更有效。
translated by 谷歌翻译
实体对齐是知识图融合中的至关重要任务。但是,大多数实体对准方法都有可伸缩性问题。最近的方法通过将大型公斤分成小块来解决这个问题,以嵌入和对齐学习。但是,这种分区和学习过程导致结构和对齐过度损失过多。因此,在这项工作中,我们提出了一种可扩展的基于GNN的实体对准方法,以从三个角度降低结构和对齐损失。首先,我们提出一种基于中心性的子图生成算法,以回顾一些具有不同子图之间桥梁的地标实体。其次,我们介绍了自我监督的实体重建,以从不完整的邻里子图中恢复实体表示形式,并设计了跨纸笔负面抽样,以在对齐学习中纳入其他子图中的实体。第三,在推理过程中,我们合并子图的嵌入,以制作一个单个空间进行对齐搜索。基准开放数据集和提议的大型DBPEDIA1M数据集的实验结果验证了我们方法的有效性。
translated by 谷歌翻译
多模式实体对齐旨在确定两个不同的多模式知识图之间的等效实体,这些实体由与实体相关的结构三元组和图像组成。大多数先前的作品都集中在如何利用和编码不同模式中的信息,而由于模态异质性,因此在实体对齐中利用多模式知识并不是微不足道的。在本文中,我们提出了基于多模式对比度学习的实体比对模型McLea,以获得多模式实体对准的有效联合表示。与以前的工作不同,麦克莱尔(McLea)考虑了面向任务的模式,并为每个实体表示形式建模模式间关系。特别是,麦克莱(McLea)首先从多种模式中学习多个单独的表示,然后进行对比学习以共同对模式内和模式间相互作用进行建模。广泛的实验结果表明,在受监督和无监督的设置下,MCLEA在公共数据集上优于公共数据集的最先进的基线。
translated by 谷歌翻译
Entity alignment is to find identical entities in different knowledge graphs (KGs) that refer to the same real-world object. Embedding-based entity alignment techniques have been drawing a lot of attention recently because they can help solve the issue of symbolic heterogeneity in different KGs. However, in this paper, we show that the progress made in the past was due to biased and unchallenging evaluation. We highlight two major flaws in existing datasets that favor embedding-based entity alignment techniques, i.e., the isomorphic graph structures in relation triples and the weak heterogeneity in attribute triples. Towards a critical evaluation of embedding-based entity alignment methods, we construct a new dataset with heterogeneous relations and attributes based on event-centric KGs. We conduct extensive experiments to evaluate existing popular methods, and find that they fail to achieve promising performance. As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment. The dataset and source code are publicly available to foster future research. Our work calls for more effective and practical embedding-based solutions to entity alignment.
translated by 谷歌翻译
为了减轻从头开始构建知识图(kg)的挑战,更一般的任务是使用开放式语料库中的三元组丰富一个kg,那里获得的三元组包含嘈杂的实体和关系。在保持知识代表的质量的同时,以新收获的三元组丰富一个公园,这是一项挑战。本文建议使用从附加语料库中收集的信息来完善kg的系统。为此,我们将任务制定为两个耦合子任务,即加入事件提取(JEE)和知识图融合(KGF)。然后,我们提出了一个协作知识图融合框架,以允许我们的子任务以交替的方式相互协助。更具体地说,探险家执行了由地面注释和主管提供的现有KG监督的JEE。然后,主管评估了探险家提取的三元组,并用高度排名的人来丰富KG。为了实施此评估,我们进一步提出了一种翻译的关系一致性评分机制,以对齐并将提取的三元组对齐为先前的kg。实验验证了这种合作既可以提高JEE和KGF的表现。
translated by 谷歌翻译
网络安全漏洞信息通常由多个渠道记录,包括政府漏洞存储库,个人维护的漏洞收集平台或漏洞披露的电子邮件列表和论坛。从不同渠道整合脆弱性信息可以使全面的威胁评估和快速部署到各种安全机制。但是,当今实体一致性技术的局限性阻碍了自动收集此类信息的努力。在我们的研究中,我们注释了第一个网络安全域实体对齐数据集并揭示安全实体的独特特征。基于这些观察结果,我们提出了第一个网络安全实体对准模型CEAM,该模型CAM,该模型为基于GNN的实体比对配备了两种机制:不对称的掩盖聚集和分区的注意力。网络安全域实体比对数据集的实验结果表明,CEAM明显优于最先进的实体比对方法。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
知识图(KG)嵌入旨在学习连续矢量空间中kg的实体和关系的潜在表示。一个经验观察是,与相同关系相关的头部(尾巴)实体通常具有相似的语义属性 - 特别是它们通常属于同一类别 - 无论他们在kg中彼此之间有多远。也就是说,他们具有全球语义相似性。但是,许多现有方法基于本地信息得出了kg嵌入,这些信息无法有效地捕获实体之间的这种全球语义相似性。为了应对这一挑战,我们提出了一种新颖的方法,该方法引入了一组称为\ textit {\ textbf {关系原型实体}}的虚拟节点,以表示由相同关系连接的头和尾部实体的原型。通过强制实体的嵌入靠近其相关的原型的嵌入,我们的方法可以有效地鼓励实体的全球语义相似性(可以在kg中很远 - 通过相同的关系相连。实体一致性和KG完成任务的实验表明,我们的方法显着优于最近的最新方法。
translated by 谷歌翻译
外部知识(A.K.A.侧面信息)在零拍摄学习(ZSL)中起着关键作用,该角色旨在预测从未出现在训练数据中的看不见的类。已被广泛调查了几种外部知识,例如文本和属性,但他们独自受到不完整的语义。因此,一些最近的研究提出了由于其高度富有效力和代表知识的兼容性而使用知识图表(千克)。但是,ZSL社区仍然缺乏用于学习和比较不同外部知识设置和基于不同的KG的ZSL方法的标准基准。在本文中,我们提出了六个资源,涵盖了三个任务,即零拍摄图像分类(ZS-IMGC),零拍摄关系提取(ZS-RE)和零拍KG完成(ZS-KGC)。每个资源都有一个正常的zsl基准标记和包含从文本到属性的kg的kg,从关系知识到逻辑表达式。我们已清楚地介绍了这些资源,包括其建设,统计数据格式和使用情况W.r.t.不同的ZSL方法。更重要的是,我们进行了一项全面的基准研究,具有两个通用和最先进的方法,两种特定方法和一种可解释方法。我们讨论并比较了不同的ZSL范式W.R.T.不同的外部知识设置,并发现我们的资源具有开发更高级ZSL方法的巨大潜力,并为应用KGS进行增强机学习的更多解决方案。所有资源都可以在https://github.com/china-uk-zsl/resources_for_kzsl上获得。
translated by 谷歌翻译
知识图完成最近已广泛研究,以通过主要建模图结构特征来完成三元组中的缺失元素,但对图形结构的稀疏性敏感。期望解决这一挑战的相关文本,例如实体名称和描述,充当知识图(kgs)的另一种表达形式(kgs)。已经提出了几种使用两个编码器的结构和文本消息的方法,但由于未能平衡它们之间的权重有限。并在推理期间保留结构和文本编码器,也遭受了沉重的参数。通过知识蒸馏的激励,我们将知识视为从输入到输出概率的映射,并在稀疏的kgs上提出了一个插件框架VEM2L,以将从文本和结构消息提取到统一的知识中融合知识。具体而言,我们将模型获取的知识分配为两个不重叠的部分:一个部分与训练三元组合的合适能力有关,可以通过激励两个编码者互相学习训练集来融合。另一个反映了未观察到的查询的概括能力。相应地,我们提出了一种新的融合策略,该策略由变量EM算法证明,以融合模型的概括能力,在此期间,我们还应用图形致密操作以进一步缓解稀疏的图形问题。通过结合这两种融合方法,我们最终提出了VEM2L框架。详细的理论证据以及定量和定性实验都证明了我们提出的框架的有效性和效率。
translated by 谷歌翻译
实体对齐(EA)在学术界和工业中都引起了广泛的关注,该行业旨在寻求具有不同知识图(KGS)相同含义的实体。 KGS中的实体之间存在实质性的多步关系路径,表明实体的语义关系。但是,现有方法很少考虑路径信息,因为并非所有自然路径都促进EA判断。在本文中,我们提出了一个更有效的实体对齐框架RPR-RHGT,该框架集成了关系和路径结构信息以及KGS中的异质信息。令人印象深刻的是,开发了一种初始可靠的路径推理算法来生成有利于EA任务的路径,从KGS的关系结构中,这是文献中第一个成功使用无限制路径信息的算法。此外,为了有效地捕获实体社区中的异质特征,设计的异质图变压器旨在建模KGS的关系和路径结构。在三个著名数据集上进行的广泛实验表明,RPR-RHGT的表现明显优于11种最佳方法,超过了命中率@1的最佳性能基线最高8.62%。我们还表现出比基线在训练集的不同比率和更难数据集的基线上更好的性能。
translated by 谷歌翻译
本文介绍了$ \ mu \ text {kg} $,一个开源python库,用于在知识图上进行表示。 $ \ mu \ text {kg} $支持通过多源知识图(以及单个知识图),多个深度学习库(Pytorch和Tensorflow2),多个嵌入任务(链接预​​测,实体对准,实体键入,实体键入),支持联合表示。 ,以及多源链接预测)以及多个并行计算模式(多进程和多GPU计算)。它目前实现26个流行知识图嵌入模型,并支持16个基准数据集。 $ \ mu \ text {kg} $提供了具有不同任务的简化管道的嵌入技术的高级实现。它还带有高质量的文档,以易于使用。 $ \ mu \ text {kg} $比现有的知识图嵌入库更全面。它对于对各种嵌入模型和任务进行彻底比较和分析非常有用。我们表明,共同学习的嵌入可以极大地帮助知识驱动的下游任务,例如多跳知识图形答案。我们将与相关字段中的最新发展保持一致,并将其纳入$ \ mu \ text {kg} $中。
translated by 谷歌翻译
现有的远处监督的关系提取器通常依靠嘈杂的数据进行模型培训和评估,这可能导致垃圾堆放系统。为了减轻问题,我们研究了小型清洁数据集是否可以帮助提高远距离监督模型的质量。我们表明,除了对模型进行更具说服力的评估外,一个小的清洁数据集还可以帮助我们构建更强大的Denoising模型。具体而言,我们提出了一个基于影响函数的清洁实例选择的新标准。它收集了样本级别的证据,以识别良好实例(这比损失级别的证据更具信息性)。我们还提出了一种教师实习机制,以控制自举套件时中间结果的纯度。整个方法是模型不合时宜的,并且在denoising Real(NYT)和合成噪声数据集上都表现出强烈的性能。
translated by 谷歌翻译