Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine contact points and directions, which involves joint logic and geometrical reasoning in the modes of the dynamics model. To tackle this issue, we propose a demonstration-guided hierarchical optimization framework to achieve offline task and motion planning (TAMP). Our work extends the formulation of the dynamics model of the pusher-slider system to include separation mode with face switching cases, and solves a warm-started TAMP problem by exploiting human demonstrations. We show that our approach can cope well with the local minima problems currently present in the state-of-the-art solvers and determine a valid solution to the task. We validate our results in simulation and demonstrate its applicability on a pusher-slider system with real Franka Emika robot in the presence of external disturbances.
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
我们描述了更改 - 联系机器人操作任务的框架,要求机器人与对象和表面打破触点。这种任务的不连续交互动态使得难以构建和使用单个动力学模型或控制策略,并且接触变化期间动态的高度非线性性质可能对机器人和物体造成损害。我们提出了一种自适应控制框架,使机器人能够逐步学习以预测更改联系人任务中的接触变化,从而了解了碎片连续系统的交互动态,并使用任务空间可变阻抗控制器提供平滑且精确的轨迹跟踪。我们通过实验比较我们框架的表现,以确定所需的代表性控制方法,以确定我们框架的自适应控制和增量学习组件需要在变化 - 联系机器人操纵任务中存在不连续动态的平稳控制。
translated by 谷歌翻译
本文提出了一个层次结构框架,用于计划和控制涉及使用完全插入的多指机器人手的掌握变化的刚性对象的操纵。尽管该框架可以应用于一般的灵巧操作,但我们专注于对手持操作的更复杂的定义,在该目标下,目标姿势必须达到适合使用该对象作为工具的掌握。高级别的计划者确定对象轨迹以及掌握更改,即添加,卸下或滑动手指,由低级控制器执行。尽管基于学习的策略可以适应变化,但GRASP序列是在线计划的,但用于对象跟踪和接触力控制的轨迹规划师和低级控制器仅基于模型,以稳健地实现该计划。通过将有关问题的物理和低级控制器的知识注入GRASP规划师中,它将学会成功生成类似于基于模型的优化方法生成的grasps,从而消除了此类方法的高计算成本到该方法的高度计算成本到解释变化。通过在物理模拟中进行实验,以实现现实工具使用方案,我们将在不同的工具使用任务和灵活的手模型上展示了方法的成功。此外,我们表明,与基于模型的方法相比,这种混合方法为轨迹和任务变化提供了更大的鲁棒性。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
In contact-rich tasks, like dexterous manipulation, the hybrid nature of making and breaking contact creates challenges for model representation and control. For example, choosing and sequencing contact locations for in-hand manipulation, where there are thousands of potential hybrid modes, is not generally tractable. In this paper, we are inspired by the observation that far fewer modes are actually necessary to accomplish many tasks. Building on our prior work learning hybrid models, represented as linear complementarity systems, we find a reduced-order hybrid model requiring only a limited number of task-relevant modes. This simplified representation, in combination with model predictive control, enables real-time control yet is sufficient for achieving high performance. We demonstrate the proposed method first on synthetic hybrid systems, reducing the mode count by multiple orders of magnitude while achieving task performance loss of less than 5%. We also apply the proposed method to a three-fingered robotic hand manipulating a previously unknown object. With no prior knowledge, we achieve state-of-the-art closed-loop performance in less than five minutes of online learning.
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
具有单个刚体模型的凸模型预测控制(MPC)在真实的腿部机器人上表现出强烈的性能。但是,凸MPC受其假设的限制,例如旋转角度和预定义的步态,从而限制了潜在溶液的丰富性。我们删除了这些假设,并使用单个刚体模型解决了完整的混合企业非凸编程。我们首先离线收集预处理问题的数据集,然后学习问题解决方案图以快速解决MPC的优化。如果可以找到温暖的启动,则可以接近全球最优性解决离线问题。通过根据初始条件产生各种步态和行为来测试所提出的控制器。硬件测试根据传感器反馈演示了在线步态生成和适应性超过50 Hz。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
本文提出了一种以非零速度的效果友好型捕捉对象的混合优化和学习方法。通过受约束的二次编程问题,该方法生成最佳轨迹,直至机器人和对象之间的接触点,以最小化其相对速度并减少初始影响力。接下来,生成的轨迹是由基于人类的捕捉演示的旋风动作原始词更新的,以确保围绕接口点的平稳过渡。此外,学习的人类可变刚度(HVS)被发送到机器人的笛卡尔阻抗控制器,以吸收后影响力并稳定捕获位置。进行了三个实验,以将我们的方法与固定位置阻抗控制器(FP-IC)进行比较。结果表明,所提出的方法的表现优于FP-IC,同时添加HVS可以更好地吸收影响后力。
translated by 谷歌翻译
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的质心动力学之间进行交替,以实现动力学共识。我们使用等椭圆形参数化的新型动量惰性质地优化能够通过``惯性塑造''来产生高度的杂技运动。我们的全身优化方法可显着改善基于标准DDP的方法的质量从质心层中利用反馈。对于在线控制,我们通过完整的质心动力学的线性转换开发了一种新颖的凸模型预测控制方案。我们的控制器可以在单个优化中有效地对接触力和关节加速度有效地优化,从而实现更直接的加速度,从而实现更直接的优化与现有四倍体MPC控制器相比,跟踪动量丰富的动作。我们在四个不同的动态操作中证明了我们的轨迹计划者的能力和通用性。然后,我们在MIT MINI Cheetah平台上展示了​​一个硬件实验,以证明整个计划的性能和整个计划的性能和性能扭曲的控制管道跳动。
translated by 谷歌翻译
近年来,机器人技术的最佳控制越来越流行,并且已应用于许多涉及复杂动力系统的应用中。闭环最佳控制策略包括模型预测控制(MPC)和通过ILQR优化的时变线性控制器。但是,此类反馈控制器依赖于当前状态的信息,从而限制了机器人需要记住其在采取行动和相应计划的机器人应用程序范围。最近提出的系统级合成(SLS)框架通过带有内存的较富裕控制器结构来规避此限制。在这项工作中,我们建议通过将SLS扩展到跟踪涉及非线性系统和非二次成本功能的问题,以最佳设计具有记忆力的反应性预期机器人技能。我们以两种情况来展示我们的方法,这些方案利用任务精确度和对象在模拟和真实环境中使用7轴的Franka Emika机器人提供的挑选和位置任务。
translated by 谷歌翻译
在本次调查中,我们介绍了执行需要不同于环境的操作任务的机器人的当前状态,使得机器人必须隐含地或明确地控制与环境的接触力来完成任务。机器人可以执行越来越多的人体操作任务,并且在1)主题上具有越来越多的出版物,其执行始终需要联系的任务,并且通过利用完美的任务来减轻环境来缓解不确定性信息,可以在没有联系的情况下进行。最近的趋势已经看到机器人在留下的人类留给人类,例如按摩,以及诸如PEG孔的经典任务中,对其他类似任务的概率更有效,更好的误差容忍以及更快的规划或学习任务。因此,在本调查中,我们涵盖了执行此类任务的机器人的当前阶段,从调查开始所有不同的联系方式机器人可以执行,观察这些任务是如何控制和表示的,并且最终呈现所需技能的学习和规划完成这些任务。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
模型预测控制(MPC)是控制机器人的流行策略,但由于混合动力学的复杂性质,很难接触系统。为了实现具有联系的系统,动态模型通常被简化或及时固定,以便有效地计划轨迹。在这项工作中,我们将混合迭代线性二次调节器扩展到以MPC方式(HILQR MPC)工作的1)通过1)修改触点模式时如何计算成本函数,2)在模拟刚体动态和3时使用并行处理。 )使用刚体动力学的有效分析衍生化计算。结果是一个可以修改参考行为的接触顺序并凝聚力计划的系统 - 在处理大型扰动时至关重要。 HILQR MPC在两个系统上进行了测试:首先,在简单的驱动弹跳球混合系统上验证了混合成本修改。然后将HILQR MPC与在四倍的机器人(Unitree A1)上使用质心动态假设的方法进行比较。 HILQR MPC在模拟和硬件测试中的表现优于质心方法。
translated by 谷歌翻译
这项研究介绍了具有刚性接触的机器人系统的全身模型预测控制(MPC),使用在线切换时间优化(STO)的给定接触序列下。我们将机器人动力学用刚性接触视为开关系统,并制定开关系统的最佳控制问题以实现MPC。我们为MPC问题使用有效的解决方案算法,该算法同时优化了切换时间和轨迹。与现有的现有方法不同,目前的有效算法可以在线优化和切换时间。通过在传统的MPC上比较了在线STO的提议的MPC,并通过固定的切换时间,通过数值模拟四倍的机器人的动态跳跃运动。在模拟比较中,提出的MPC成功控制了动态跳跃运动的两倍,这是常规MPC的两倍,这表明所提出的方法扩展了整体MPC的能力。我们进一步在四足机器人单位A1上进行硬件实验,并证明所提出的方法在实际机器人上实现了动态运动。
translated by 谷歌翻译
模型预测控制(MPC)方案已经证明了它们在控制高自由度(DOF)复杂机器人系统方面的效率。但是,它们的计算成本很高,更新速度约为数十万。这种相对较慢的更新速率阻碍了这种系统稳定的触觉远程操作的可能性,因为缓慢的反馈回路可能会导致对操作员的不稳定性和透明度的丧失。这项工作为MPC控制的复杂机器人系统的透明远程操作提供了一个新颖的框架。特别是,我们采用反馈MPC方法并利用其结构来以快速速率计算运营商输入,该快速速率与MPC循环本身的更新率无关。我们在移动操纵器平台上演示了我们的框架,并表明它可以显着提高触觉远程操作的透明度和稳定性。我们还强调,所提出的反馈结构是令人满意的,并且不违反最佳控制问题中定义的任何约束。据我们所知,这项工作是使用全身MPC框架的双边操纵器的双边远程操作的首次实现。
translated by 谷歌翻译
模型预测控制是为机器人生成复杂动作的强大工具。但是,它通常需要在线解决非凸问题以产生丰富的行为,这在计算上很昂贵,并且并非总是实时实用的。此外,通过当前状态空间方法,反馈回路中高维传感器数据(例如RGB-D图像)的直接集成具有挑战性。本文旨在解决这两个问题。它引入了模型预测控制方案,其中神经网络不断根据感官输入来更新二次程序的成本函数,旨在最大程度地减少一般的非凸任务丢失而不解决非convex问题在线。通过更新成本,机器人可以直接从传感器测量中适应环境的变化,而无需进行新的成本设计。此外,由于可以通过硬限制有效地解决二次​​程序,因此可以确保机器人安全部署。在工业机器人操纵器上进行了各种涉及任务的实验表明,我们的方法可以有效地解决具有高维视觉感觉输入的复杂的非凸问题,同时仍然对外部干扰保持稳定。
translated by 谷歌翻译
任务和运动计划在解决严格的顺序操作问题方面取得了重大进展。但是,此类计划公式与反应性执行的控制方法之间存在差距。在本文中,我们提出了一种模型预测控制方法,该方法专门执行一个约束序列,该方法对应于TAMP计划的离散决策顺序。我们将总体控制问题分解为三个子问题(解决顺序航路点,其时序和一个简短的水平路径),每个问题是每个MPC循环中在线求解的一个非线性程序。最终的控制策略可以解释约束的长期相互依存关系,并通过所有约束来反应地计划正时正常的过渡。我们还建议在无法实现当前阶段的运行限制时进行回溯,从而导致一种流利的重新定位行为,这对实验者的扰动和干扰是可靠的。
translated by 谷歌翻译