自行车分享系统(BSSS)在全球越来越受欢迎,并引起了广泛的研究兴趣。本文研究了BSSS中的需求预测问题。空间和时间特征对于BSSS的需求预测至关重要,但提取了时尚动态的需求是挑战性的。另一个挑战是捕捉时空动力学和外部因素之间的关系,例如天气,一周和一天时间。为了解决这些挑战,我们提出了一个名为MSTF-Net的多个时空融合网络。 MSTF-Net由多个时空块组成:3D卷积网络(3D-CNN)块,Eidetic 3D卷积长短短期存储网络(E3D-LSTM)块,以及完全连接的(FC)块。具体地,3D-CNN嵌段突出显示在每个片段中提取短期时空依赖(即,亲近,期间和趋势); E3D-LSTM块进一步提取对所有碎片的长期时空依赖; FC块提取外部因素的非线性相关性。最后,融合E3D-LSTM和FC块的潜在表示以获得最终预测。对于两个现实世界数据集,显示MSTF-Net优于七种最先进的模型。
translated by 谷歌翻译
交通流量预测对于智能城市管理和公共安全至关重要和挑战。最近的研究表明,无卷积的变压器方法的潜力提取了复杂的影响因素之间的动态依赖性。但是,两个问题可防止该方法有效地应用于交通流预测。首先,它忽略了交通流视频的时空结构。其次,由于长序列,由于二次时次点 - 产品计算,很难关注重要的关注。为了解决这两个问题,我们首先将依赖性分解,然后设计一个名为prostformer的渐进空间自我关注机制。它具有两个独特的特征:(1)对应于分解,自我关注机制逐渐侧重于从本地到全球区域的空间依赖,从内部到外部片段的时间依赖(即,亲近,期间和趋势)。最后在外部依赖性,如天气,温度和一周的一周; (2)通过将时空结构掺入自我关注机构中,Prostformer中的每个块通过将具有时空位置的区域聚集来显着降低计算来突出唯一的依赖性。我们在两个交通数据集上评估Prostformer,每个数据集包括三个具有大,中等和小尺度的单独数据集。尽管与交通流量预测的卷积架构相比,虽然与卷积架构相比,Prostformer在大规模数据集上比RMSE更好地执行或相同。当预先训练在大规模数据集并转移到介质和小规模数据集时,Prostformer达到了显着的增强并表现得最好。
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
准确预测短期OD矩阵(即,从各种来源到目的地的乘客流量的分布)是地铁系统中的一个重要任务。由于许多影响因素的不断变化的性质和实时延迟数据收集问题,这是强大的挑战性。最近,已经提出了一些基于学习的基于学习的模型,以便在乘车和高速公路中进行OD矩阵预测。然而,由于其不同的先验知识和上下文设置,这些模型不能充分捕获地铁网络中的站点之间的复杂时空相关性。在本文中,我们提出了一个混合框架多视图Trgru来解决OD Metro Matrix预测。特别是,它使用三个模块来模拟三个流动变化模式:最近的趋势,日常趋势,每周趋势。在每个模块中,基于每个站的嵌入的多视图表示被构造并馈送到基于变压器的门控复发结构,以通过全球自我注意机制捕获不同站的OD流的动态空间依赖性。在三种大型现实世界地铁数据集上进行了广泛的实验,证明了我们的多视图Trgru在其他竞争对手的优越性。
translated by 谷歌翻译
上下文特征是构建时空人群流预测(STCFP)模型的重要数据源。但是,应用上下文的困难在于上下文特征(例如,天气,假日和利益点)和上下文建模技术在不同情况下的不明通用性。在本文中,我们开发了一个实验平台,该平台由大规模时空人群流数据,上下文数据和最新时空预测模型组成三个城市人群流动预测方案(自行车流,地铁乘客流量和电动汽车充电需求)中的技术。特别是,我们基于广泛研究的广泛研究来开发上下文建模技术的一般分类学。通过三个现实世界数据集,包括数百万记录和丰富的上下文数据,我们已经培训并测试了数百种不同的模型。我们的结果揭示了一些重要的观察:(1)使用更多的上下文特征可能并不总是通过现有上下文建模技术进行更好的预测;特别是,与其他上下文功能组合相比,假日和时间位置的上下文特征组合可以提供更多可概括的有益信息。 (2)在上下文建模技术中,使用门控单元将原始上下文特征纳入最先进的预测模型具有良好的概括性。此外,我们还为想要构建STCFP应用程序的从业者纳入上下文因素提供了一些建议。根据我们的发现,我们呼吁将来的研究工作致力于开发新的上下文处理和建模解决方案,以充分利用STCFP上下文功能的潜力。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译
旨在预测人群进入或离开某些地区的人群的预测是智能城市的一项基本任务。人群流数据的关键属性之一是周期性:一种按常规时间间隔发生的模式,例如每周模式。为了捕获这种周期性,现有研究要么将周期性的隐藏状态融合到网络中,以学习或将额外的定期策略应用于网络体系结构。在本文中,我们设计了一个新颖的定期残差学习网络(PRNET),以更好地建模人群流数据中的周期性。与现有方法不同,PRNET通过建模输入(上一个时期)和输出(未来时间段)之间的变化来将人群流动预测作为周期性的残差学习问题。与直接预测高度动态的人群流动相比,学习更多的固定偏差要容易得多,从而有助于模型训练。此外,学到的变化使网络能够在每个时间间隔内产生未来条件及其相应每周观察的残差,因此有助于更准确的多步骤预测。广泛的实验表明,PRNET可以轻松地集成到现有模型中,以增强其预测性能。
translated by 谷歌翻译
为了减少乘客等候时间和驾驶员搜索摩擦,骑行公司需要准确地预测时空需求和供需差距。然而,由于乘坐乘车系统中的需求和供需差距有关的时空依赖性,对需求和供需差距的准确预测是一项艰巨的任务。此外,由于机密性和隐私问题,乘车通过删除区域的空间邻接信息,有时会向研究人员发布,这阻碍了时空依赖的检测。为此,本文提出了一种新颖的时空深度学习架构,用于预测具有匿名空间邻接信息的乘车 - HaIning系统中的需求和供需差距,其与时空深度学习架构集成了特征重要性层含有一维卷积神经网络(CNN)和区域分布独立的复发性神经网络(INDRNN)。开发的架构与DIDI Chuxing的真实世界数据集进行了测试,这表明我们的模型基于所提出的体系结构可以优于传统的时间序列模型(例如,Arima)和机器学习模型(例如,梯度升压机,分布式随机林,广义线性模型,人工神经网络)。另外,该特征重要层通过揭示预测中使用的输入特征的贡献提供了模型的解释。
translated by 谷歌翻译
考虑到运输系统的多模式性质和潜在的跨模式相关性,通过从多模式数据中学习来提高需求预测准确性的趋势越来越大。这些多模式的预测模型可以提高准确性,但是当多模式数据集的不同部分由无法直接共享数据的不同机构拥有时,不太实际。尽管各个机构可能无法直接共享他们的数据,但他们可能会共享受其数据培训的预测模型,在此模型无法使用其数据集中确定确切信息。这项研究提出了一个无监督的知识适应需求预测框架,以通过基于其他模式的数据利用预训练的模型来预测目标模式的需求,这不需要源模式的直接数据共享。所提出的框架利用多种运输模式之间的潜在共享模式来改善预测性能,同时避免在不同机构之间直接共享数据。具体而言,首先根据源模式的数据学习了预训练的预测模型,该模式可以捕获和记住源旅行模式。然后,将目标数据集的需求数据编码为单个知识部分和共享知识部分,该部分将分别通过个人提取网络提取旅行模式和共享提取网络。无监督的知识适应策略用于通过制作预训练的网络和共享提取网络类似来形成共享功能,以进一步预测。我们的发现表明,通过将预先训练的模型共享到目标模式可以改善预测性能,而无需依赖直接数据共享。
translated by 谷歌翻译
动态需求预测对于城市交通系统有效运行和管理至关重要。在单模需求预测上进行了广泛的研究,忽略了不同运输模式的需求可以彼此相关。尽管最近的一些努力,现有的多式化需求预测方法通常不够灵活,以便在不同模式下具有不同的空间单元和异质时空相关性的多路复用网络。为了解决这些问题,本研究提出了一种多重峰需求预测的多关系时空图神经网络(ST-MRGNN)。具体地,跨模式的空间依赖性被多个内部和模态关系图编码。引入多关系图神经网络(MRGNN)以捕获跨模式异构空间依赖性,包括广义图卷积网络,以了解关系图中的消息传递机制和基于关注的聚合模块,以总结不同的关系。我们进一步将MRGNN与时间门控卷积层相结合,共同模拟异质时滞的相关性。广泛的实验是使用真实的地铁和来自纽约市的乘车数据集进行的实验,结果验证了我们提出的方法对模式的现有方法的提高性能。需求稀疏位置的改进特别大。进一步分析ST-MRGNN的注意机制还表明了对理解跨模式相互作用的良好解释性。
translated by 谷歌翻译
Deep learning approaches for spatio-temporal prediction problems such as crowd-flow prediction assumes data to be of fixed and regular shaped tensor and face challenges of handling irregular, sparse data tensor. This poses limitations in use-case scenarios such as predicting visit counts of individuals' for a given spatial area at a particular temporal resolution using raster/image format representation of the geographical region, since the movement patterns of an individual can be largely restricted and localized to a certain part of the raster. Additionally, current deep-learning approaches for solving such problem doesn't account for the geographical awareness of a region while modelling the spatio-temporal movement patterns of an individual. To address these limitations, there is a need to develop a novel strategy and modeling approach that can handle both sparse, irregular data while incorporating geo-awareness in the model. In this paper, we make use of quadtree as the data structure for representing the image and introduce a novel geo-aware enabled deep learning layer, GA-ConvLSTM that performs the convolution operation based on a novel geo-aware module based on quadtree data structure for incorporating spatial dependencies while maintaining the recurrent mechanism for accounting for temporal dependencies. We present this approach in the context of the problem of predicting spatial behaviors of an individual (e.g., frequent visits to specific locations) through deep-learning based predictive model, GADST-Predict. Experimental results on two GPS based trace data shows that the proposed method is effective in handling frequency visits over different use-cases with considerable high accuracy.
translated by 谷歌翻译
我们研究了具有动态,可能的周期性的流量的预测问题和区域之间的关节空间依赖关系。鉴于从时隙0到T-1的城市中区的聚合流入和流出流量,我们预测了任何区域的时间t的流量。该地区的现有技术通常以脱钩的方式考虑空间和时间依赖性,或者在具有大量超参数曲调的训练中是相当的计算密集。我们提出了ST-TIS,一种新颖,轻巧和准确的空间变压器,具有信息融合和区域采样进行交通预测。 ST-TIS将规范变压器与信息融合和区域采样延伸。信息融合模块捕获区域之间的复杂空间依赖关系。该区域采样模块是提高效率和预测精度,将计算复杂性切割为依赖性学习从$ O(n ^ 2)$到$ O(n \ sqrt {n})$,其中n是区域的数量。比最先进的模型的参数较少,我们模型的离线培训在调整和计算方面明显更快(培训时间和网络参数减少高达90±90 \%)。尽管存在这种培训效率,但大量实验表明,ST-TIS在网上预测中大幅度更准确,而不是最先进的方法(平均改善高达11 \%$ 11 \%$ ON MAPE上的$ 14 \%$ 14 \%$ 14 \%$ ON MAPE) 。
translated by 谷歌翻译
从广泛的流量监视传感器收集的旅行时间数据需要大数据分析工具来查询,可视化和识别有意义的流量模式。本文利用了Caltrans性能测量系统(PEMS)系统的大规模旅行时间数据集,该系统是传统数据处理和建模工具的溢出。为了克服大量数据的挑战,大数据分析引擎Apache Spark和Apache MXNET用于数据争吵和建模。进行季节性和自相关以探索和可视化时变数据的趋势。受到许多人工智能(AI)任务的层次结构成功的启发,我们巩固了细胞和隐藏状态,从低级到高级LSTM传递,其注意力集中在类似于人类感知系统的运作方式上。设计的分层LSTM模型可以在不同的时间尺度上考虑依赖项,以捕获网络级别旅行时间的时空相关性。然后,设计了另一个自我发场模块,以将LSTM提取的功能连接到完全连接的层,从而预测所有走廊的旅行时间,而不是单个链接/路线。比较结果表明,层次的LSTM引起注意(HIERLSTMAT)模型在30分钟和45分钟的视野时给出了最佳的预测结果,并且可以成功预测不寻常的拥塞。通过将它们与流行的数据科学和深度学习框架进行比较,从大数据分析工具中得出的效率得到了评估。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
在本文中,我们提出了STC-GEF,这是一种新型的时空跨平台图嵌入城市交通流量预测的融合方法。我们已经设计了基于图形卷积网络(GCN)的空间嵌入模块,以在交通流数据中提取复杂的空间特征。此外,为了捕获各个时间间隔的交通流数据之间的时间依赖性,我们设计了一个基于复发神经网络的时间嵌入模块。基于观察到不同的运输平台Trip数据(例如出租车,Uber和Lyft)可以关联的观察结果,我们设计了一种有效的融合机制,该机制结合了来自不同运输平台的旅行数据,并进一步将它们用于跨平台交通流量。预测(例如,用于出租车交通流量预测的出租车和乘车共享平台)。我们根据纽约市(NYC)的黄色出租车和乘车共享(LYFT)的现实世界旅行数据进行了广泛的现实实验研究,并验证了STC-GEF在融合不同运输平台中的准确性和有效性数据并预测流量流。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
对于电网操作,具有精细时间和空间分辨率的太阳能发电准确预测对于电网的操作至关重要。然而,与数值天气预报(NWP)结合机器学习的最先进方法具有粗略分辨率。在本文中,我们采用曲线图信号处理透视和型号的多网站光伏(PV)生产时间序列作为图表上的信号,以捕获它们的时空依赖性并实现更高的空间和时间分辨率预测。我们提出了两种新颖的图形神经网络模型,用于确定性多站点PV预测,被称为图形 - 卷积的长期内存(GCLSTM)和图形 - 卷积变压器(GCTRAFO)模型。这些方法仅依赖于生产数据并利用PV系统提供密集的虚拟气象站网络的直觉。所提出的方法是在整整一年的两组数据集中评估:1)来自304个真实光伏系统的生产数据,以及2)模拟生产1000个PV系统,包括瑞士分布。该拟议的模型优于最先进的多站点预测方法,用于预测前方6小时的预测视野。此外,所提出的模型以NWP优于最先进的单站点方法,如前方的视野上的输入。
translated by 谷歌翻译
Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-theart operational ROVER algorithm for precipitation nowcasting.
translated by 谷歌翻译