最近,机器学习(ML)电位的发展使得以量子力学(QM)模型的精度进行大规模和长期分子模拟成为可能。但是,对于高水平的QM方法,例如在元gga级和/或具有精确交换的密度函数理论(DFT),量子蒙特卡洛等,生成足够数量的用于训练的数据由于其高成本,计算挑战性。在这项工作中,我们证明了基于ML的DFT模型Deep Kohn-Sham(Deepks)可以在很大程度上缓解这个问题。 DeepKS采用计算高效的基于神经网络的功能模型来构建在廉价DFT模型上添加的校正项。在训练后,DeepKs提供了与高级QM方法相比,具有紧密匹配的能量和力,但是所需的训练数据的数量是比训练可靠的ML潜力所需的数量级要小。因此,DeepKs可以用作昂贵的QM型号和ML电位之间的桥梁:一个人可以生成相当数量的高准确性QM数据来训练DeepKs模型,然后使用DeepKs型号来标记大量的配置以标记训练ML潜力。该周期系统方案在DFT软件包算盘中实施,该计划是开源的,可以在各种应用程序中使用。
translated by 谷歌翻译
我们开发了一种组合量子蒙特卡罗的准确性在描述与机器学习电位(MLP)的效率描述电子相关性的技术。我们使用内核线性回归与肥皂(平滑的重叠原子位置)方法结合使用,以非常有效的方式在此实现。关键成分是:i)一种基于最远点采样的稀疏技术,确保我们的MLP的一般性和可转换性和II)所谓的$ \ Delta $ -Learning,允许小型训练数据集,这是一种高度准确的基本属性但是计算地要求计算,例如基于量子蒙特卡罗的计算。作为第一个应用,我们通过强调这一非常高精度的重要性,展示了高压氢气液体过渡的基准研究,并显示了我们的MLP的高精度的重要性,实验室在实验中难以进行实验,以及实验理论仍然远非结论。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
氢化镁(MGH $ _2 $)已被广泛研究有效储氢。然而,其散装解吸温度(553 k)被认为是实际应用的太高。除了掺杂外,可以降低这种用于释放氢的这种反应能量的策略是使用MGH $ _2 $基本的纳米颗粒(NPS)。在这里,我们首先调查Mg $ _N $ H $ _ {2n} $ NPS($ N <10 $)的热力学特性,特别是通过评估对焓,熵和热膨胀的anharmonic影响随机自我一致的谐波近似(SSCHA)。后一种方法超出了先前的方法,通常基于分子力学和准谐波近似,允许AB初始自由能量计算。我们发现了几乎线性依赖于间隙键长度的温度 - 具有超过300k的相对变化,与Mg-H键的键距离降低。为了将NPS的大小增加到MGH $ _2 $的氢解吸的实验中,我们设计了培训的计算有效的机器学习模型,以准确地确定力量和总能量(即潜在能量表面),与SSCHA模型集成了后者完全包括anharmonic效应。我们发现亚纳米簇Mg $ _n $ h $ _ {2n} $以$ n \ leq 10 $的显着减少,但不可忽视,虽然因anharmonicities(最多) 10%)。
translated by 谷歌翻译
机器学习电位通常是在基态的,未脑的能量表面上训练的,该能量表面仅取决于原子位置而不取决于模拟温度。这无视热激发电子的影响,这在金属中很重要,对于描述温暖的物质至关重要。这些效果的准确物理描述要求该核在温度依赖性电子自由能上移动。我们提出了一种方法,以在任意电子温度下使用地面计算中专门训练数据,避免需要训练温度依赖的电位,并在金属液体氢上基准在任意电子温度下获得该自由能的机器学习预测。天然气巨头和棕色矮人的核心。这项工作证明了混合方案的优势,这些方案使用物理考虑来结合机器学习预测,为开发类似方法的开发提供了蓝图,这些方法通过消除物理和数据驱动方法之间的屏障来扩展原子建模的覆盖范围。
translated by 谷歌翻译
分子或材料的电子密度最近作为机器学习模型的目标数量受到了主要关注。一种自然选择,用于构建可传递可转移和线性缩放预测的模型是使用类似于通常用于密度拟合近似值的常规使用的原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以直接在优化且高度稀疏的特征空间中最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的限制,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度函数计算,而误差仅为0.1 MEV/ATOM。最后,我们测试了高度异构QM9基准数据集的方法,这表明训练数据的一小部分足以在化学精度内得出地面总能量。
translated by 谷歌翻译
对称考虑对于用于提供原子配置的有效数学表示的主要框架的核心,然后在机器学习模型中用于预测与每个结构相关的特性。在大多数情况下,模型依赖于以原子为中心的环境的描述,并且适合于学习可以分解成原子贡献的原子特性或全局观察到。然而,许多与量子机械计算相关的数量 - 最值得注意的是,以原子轨道基础写入时的单粒子哈密顿矩阵 - 与单个中心无关,但结构中有两个(或更多个)原子。我们讨论一系列结构描述符,以概括为N中心案例的非常成功的原子居中密度相关特征,特别是如何应用这种结构,以有效地学习(有效)单粒子汉密尔顿人的矩阵元素以原子为中心的轨道基础。这些N中心的特点是完全的,不仅在转换和旋转方面,而且还就与原子相关的指数的排列而言 - 并且适合于构建新类的对称适应的机器学习模型分子和材料的性质。
translated by 谷歌翻译
使用精确能量功能的原子模拟可以为气体和冷凝相中的分子的功能运动提供分子水平洞察。与最近开发的和目前在整合和结合的努力与机器学习技术相结合,提供了一个独特的机会,使这种动态模拟更接近现实。这种观点界定了现场其他人的努力和您自己的工作的现状,并讨论了开放问题和未来的前景。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译
从实验或模拟数据中学习对的相互作用对于分子模拟引起了极大的兴趣。我们提出了一种使用可区分的模拟(DIFFSIM)从数据中学习对相互作用的通用随机方法。 DIFFSIM通过分子动力学(MD)模拟定义了基于结构可观察物(例如径向分布函数)的损耗函数。然后,使用反向传播直接通过随机梯度下降直接学习相互作用电位,以通过MD模拟计算相互作用势的结构损耗度量标准的梯度。这种基于梯度的方法是灵活的,可以配置以同时模拟和优化多个系统。例如,可以同时学习不同温度或不同组合物的潜力。我们通过从径向分布函数中恢复简单的对电位(例如Lennard-Jones系统)来证明该方法。我们发现,与迭代Boltzmann倒置相比,DIFFSIM可用于探测配对电位的更广泛的功能空间。我们表明,我们的方法可用于同时拟合不同组成和温度下的模拟电位,以提高学习势的可传递性。
translated by 谷歌翻译
开发神经网络电位(NNPS)的一个隐藏但重要的问题是培训算法的选择。在这里,我们使用Photl-Parrinello神经网络(BPNN)和两个可公开可访问的液体数据集进行比较两个流行训练算法,自适应力矩估计算法(ADAM)和扩展卡尔曼滤波算法(EKF)的性能。natl。阿卡。SCI。U.S.A. 2016,113,8368-8373和Proc。natl。阿卡。SCI。U.S.A. 2019,116,1110-1115]。这是通过在Tensorflow中实施EKF来实现的。结果发现,与ADAM相比,用EKF培训的NNP对学习率的价值更为可转让和更敏感。在这两种情况下,验证集的错误指标并不总是作为NNP的实际性能的良好指标。相反,我们表明它们的性能很好地与基于Fisher信息的相似度措施相互作用。
translated by 谷歌翻译
在分子动力学(MD)中,最近在量子机械数据上训练的神经网络(NN)潜力训练了巨大的成功。直接从实验数据学习NN电位的自上而下的方法在通过MD模拟背交时,通常面临着数值和计算挑战。我们介绍了可分辨率的轨迹重新重量(差异)方法,该方法通过MD模拟绕过差异,以对时间无关的可观察可观察。利用热力学扰动理论,避免爆炸梯度,并在自上而下学习的梯度计算中实现大约2次数量级加速。我们在基于多样化的实验可观察结果,表明了在学习NN电位学习NN电位的有效性,包括热力学,结构和机械性能的不同实验性观察。重要的是,衍射还概括了自下而上的结构粗晶体方法,例如迭代Boltzmann反转到任意潜力。呈现的方法构成了富有实验数据富集NN电位的重要里程碑,特别是当准确的自下而上数据不可用时。
translated by 谷歌翻译
Data-driven interatomic potentials have emerged as a powerful class of surrogate models for {\it ab initio} potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents \text{\it hyperactive learning} (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 microsecond/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.
translated by 谷歌翻译
Developing machine learning-based interatomic potentials from ab-initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab-initio data. Additionally, we show that fine-tuning with energy labels alone suffices to obtain accurate atomic forces and run large-scale atomistic simulations. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
分子照片开关是光激活药物的基础。关键的照片开关是偶氮苯,它表现出对光线的反式cis异构主义。顺式异构体的热半衰期至关重要,因为它控制着光诱导的生物学效应的持续时间。在这里,我们介绍了一种计算工具,用于预测偶氮苯衍生物的热半衰期。我们的自动化方法使用了经过量子化学数据训练的快速准确的机器学习潜力。在建立在良好的早期证据的基础上,我们认为热异构化是通过Intersystem Crossing介导的旋转来进行的,并将这种机制纳入我们的自动化工作流程。我们使用我们的方法来预测19,000种偶氮苯衍生物的热半衰期。我们探索障碍和吸收波长之间的趋势和权衡,并开源我们的数据和软件以加速光精神病学研究。
translated by 谷歌翻译
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
分子动力学模拟是科学的基石,允许从系统的热力学调查以分析复杂的分子相互作用。通常,为了创建扩展的分子轨迹,可以是计算昂贵的过程,例如,在运行$ ab-initio $ simulations时。因此,重复这样的计算以获得更准确的热力学或在由细粒度量子相互作用产生的动态中获得更高的分辨率可以是时间和计算的。在这项工作中,我们探讨了不同的机器学习(ML)方法,以提高在后处理步骤内按需的分子动力学轨迹的分辨率。作为概念证明,我们分析了神经杂物,哈密顿网络,经常性神经网络和LSTM等双向神经网络的表现,以及作为参考的单向变体,用于分子动力学模拟(这里是: MD17数据集)。我们发现Bi-LSTMS是表现最佳的模型;通过利用恒温轨迹的局部时对称,它们甚至可以学习远程相关性,并在分子复杂性上显示高稳健性。我们的模型可以达到轨迹插值中最多10美元^ {-4}的准确度,同时忠实地重建了几个无奈复杂的高频分子振动的全周期,使学习和参考轨迹之间的比较难以区分。该工作中报告的结果可以作为更大系统的基线服务(1),以及(2)用于建造更好的MD集成商。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
我们为致密氢的方程式提供了基于深层生成模型的变化自由能方法。我们采用归一化流网络来对质子玻尔兹曼分布和费米子神经网络进行建模,以在给定的质子位置对电子波函数进行建模。通过共同优化两个神经网络,我们达到了与先前的电子蒙特卡洛计算相当的变异自由能。我们的结果表明,与先前的蒙特卡洛和从头算分子动力学数据相比,行星条件下的氢甚至更浓密,这远离经验化学模型的预测。获得可靠的密集氢状态方程,尤其是直接进入熵和自由能,为行星建模和高压物理学研究开辟了新的机会。
translated by 谷歌翻译