Image segmentation is a fundamental task in computer vision. Data annotation for training supervised methods can be labor-intensive, motivating unsupervised methods. Some existing approaches extract deep features from pre-trained networks and build a graph to apply classical clustering methods (e.g., $k$-means and normalized-cuts) as a post-processing stage. These techniques reduce the high-dimensional information encoded in the features to pair-wise scalar affinities. In this work, we replace classical clustering algorithms with a lightweight Graph Neural Network (GNN) trained to achieve the same clustering objective function. However, in contrast to existing approaches, we feed the GNN not only the pair-wise affinities between local image features but also the raw features themselves. Maintaining this connection between the raw feature and the clustering goal allows to perform part semantic segmentation implicitly, without requiring additional post-processing steps. We demonstrate how classical clustering objectives can be formulated as self-supervised loss functions for training our image segmentation GNN. Additionally, we use the Correlation-Clustering (CC) objective to perform clustering without defining the number of clusters ($k$-less clustering). We apply the proposed method for object localization, segmentation, and semantic part segmentation tasks, surpassing state-of-the-art performance on multiple benchmarks.
translated by 谷歌翻译
在本文中,我们描述了一种基于图的算法,该算法使用自我监管的变压器获得的功能来检测图像和视频中的显着对象。使用这种方法,将构成图像或视频的图像贴片组织成一个完全连接的图,其中每对贴片之间的边缘使用变压器学到的功能在补丁之间标记为相似性得分。然后将显着物体的检测和分割作为图形问题配制,并使用经典的归一化切割算法解决。尽管这种方法很简单,但它仍可以在几个常见的图像和视频检测和分割任务上实现最新结果。对于无监督的对象发现,当使用VOC07,VOC12和COCO20K数据集进行测试时,这种方法的优于竞争方法的差距分别为6.1%,5.7%和2.6%。对于图像中无监督的显着性检测任务,此方法将联合(IOU)的交叉分数提高了4.4%,5.6%和5.2%。与当前最新技术相比,与ECSD,DUTS和DUT-OMRON数据集进行测试时。该方法还通过戴维斯,SEGTV2和FBMS数据集为无监督的视频对象分割任务实现了竞争结果。
translated by 谷歌翻译
Recent advances in self-supervised visual representation learning have paved the way for unsupervised methods tackling tasks such as object discovery and instance segmentation. However, discovering objects in an image with no supervision is a very hard task; what are the desired objects, when to separate them into parts, how many are there, and of what classes? The answers to these questions depend on the tasks and datasets of evaluation. In this work, we take a different approach and propose to look for the background instead. This way, the salient objects emerge as a by-product without any strong assumption on what an object should be. We propose FOUND, a simple model made of a single $conv1\times1$ initialized with coarse background masks extracted from self-supervised patch-based representations. After fast training and refining these seed masks, the model reaches state-of-the-art results on unsupervised saliency detection and object discovery benchmarks. Moreover, we show that our approach yields good results in the unsupervised semantic segmentation retrieval task. The code to reproduce our results is available at https://github.com/valeoai/FOUND.
translated by 谷歌翻译
Unsupervised object discovery aims to localize objects in images, while removing the dependence on annotations required by most deep learning-based methods. To address this problem, we propose a fully unsupervised, bottom-up approach, for multiple objects discovery. The proposed approach is a two-stage framework. First, instances of object parts are segmented by using the intra-image similarity between self-supervised local features. The second step merges and filters the object parts to form complete object instances. The latter is performed by two CNN models that capture semantic information on objects from the entire dataset. We demonstrate that the pseudo-labels generated by our method provide a better precision-recall trade-off than existing single and multiple objects discovery methods. In particular, we provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.
translated by 谷歌翻译
在本文中,我们表明,自我监督的功能学习的最新进展使无监督的对象发现和语义细分,其性能与10年前的监督语义分割相匹配。我们提出了一种基于无监督的显着性掩码和自我监督的特征聚类的方法,以启动对象发现,然后在伪标签上训练语义分割网络,以在带有多个对象的图像上引导系统。我们介绍了Pascal VOC的结果,该结果远远超出了当前的最新状态(47.3 MIOU),我们首次在整个81个类别中向COCO上首次报告结果:我们的方法发现了34个类别,价格超过20美元\%$ iou,同时获得所有81个类别的平均值为19.6。
translated by 谷歌翻译
自我监督学习的进步带来了强大的一般图像表示学习方法。到目前为止,它主要集中在图像级学习上。反过来,诸如无监督图像细分之类的任务并没有从这种趋势中受益,因为它们需要空间多样性的表示。但是,学习密集的表示具有挑战性,因为在无监督的环境中,尚不清楚如何指导模型学习与各种潜在对象类别相对应的表示形式。在本文中,我们认为对物体部分的自我监督学习是解决此问题的方法。对象部分是可以推广的:它们是独立于对象定义的先验性,但可以分组以形成对象后验。为此,我们利用最近提出的视觉变压器参与对象的能力,并将其与空间密集的聚类任务相结合,以微调空间令牌。我们的方法超过了三个语义分割基准的最新方法,提高了17%-3%,表明我们的表示在各种对象定义下都是用途广泛的。最后,我们将其扩展到完全无监督的分割 - 即使在测试时间也可以完全避免使用标签信息 - 并证明了一种基于社区检测的自动合并发现的对象零件的简单方法可产生可观的收益。
translated by 谷歌翻译
无监督语义分割的任务旨在将像素聚集到语义上有意义的群体中。具体而言,分配给同一群集的像素应共享高级语义属性,例如其对象或零件类别。本文介绍了MaskDistill:基于三个关键想法的无监督语义细分的新颖框架。首先,我们提倡一种数据驱动的策略,以生成对象掩模作为语义分割事先的像素分组。这种方法省略了手工制作的先验,这些先验通常是为特定场景组成而设计的,并限制了竞争框架的适用性。其次,MaskDistill将对象掩盖簇簇以获取伪地真相,以训练初始对象分割模型。第三,我们利用此模型过滤出低质量的对象掩模。这种策略减轻了我们像素分组中的噪声,并导致了我们用来训练最终分割模型的干净掩模集合。通过组合这些组件,我们可以大大优于以前的作品,用于对Pascal(+11%MIOU)和COCO(+4%Mask AP50)进行无监督的语义分割。有趣的是,与现有方法相反,我们的框架不在低级图像提示上,也不限于以对象为中心的数据集。代码和型号将提供。
translated by 谷歌翻译
我们利用从预先训练的视觉变压器(VIT)提取的深度特征,如密集的视觉描述符。我们证明这些特征是当从自我监督的Vit模型(Dino-Vit)中提取时,表现出几种打击性质:(i)特征在高空间分辨率下编码强大的高级信息 - 即,捕获精细的语义对象部件空间粒度和(ii)编码的语义信息跨相关但不同的对象类别(即超级类别)共享。这些属性允许我们设计强大的密集Vit描述符,便于各种应用,包括共分割,部分共分割和通信 - 通过将轻量级方法应用于深度染色特征(例如,分布/聚类)来实现。我们将这些应用程序进一步接受级别任务的领域 - 展示相关类别的对象如何在显着的姿势和外观变化下常规分段为语义部分。我们的方法,在定性和定量地评估的方法,实现最先进的部分共分割结果,以及最近监督方法的竞争结果,专门针对共同分割和对应关系。
translated by 谷歌翻译
自我监督学习中的最新作品通过以对象为中心或基于区域的对应目标进行预处理,在场景级密集的预测任务上表现出了强劲的表现。在本文中,我们介绍了区域对象表示学习(R2O),该学习统一了基于区域的和以对象为中心的预处理。 R2O通过训练编码器以动态完善基于区域的段为中心的蒙版,然后共同学习掩模中内容的表示形式。 R2O使用“区域改进模块”将使用区域级先验生成的小图像区域分组为较大的区域,这些区域倾向于通过聚类区域级特征对应对应对象。随着训练的进展,R2O遵循了一个区域到对象的课程,该课程鼓励学习区域级的早期特征并逐渐进步以训练以对象为中心的表示。使用R2O的表示形式导致了Pascal VOC(+0.7 MIOU)和CityScapes(+0.4 MIOU)的语义细分表现最先进的表现,并在MS Coco(+0.3 Mask AP)上进行了实例细分。此外,在对Imagenet进行了预审进之后,R2O预处理的模型能够超过Caltech-UCSD Birds 200-2011数据集(+2.9 MIOU)的无监督物体细分中现有的最新对象细分。我们在https://github.com/kkallidromitis/r2o上提供了这项工作的代码/模型。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
光谱群集中使用的目标函数通常由两个术语组成:i)一个术语最小化群集分配的局部二次变化,并且;ii)一个平衡聚类分区并有助于避免退化解决方案的术语。本文表明,配备合适消息传递层的图形神经网络可以通过仅优化平衡项来生成良好的集群分配。归因图数据集的结果显示了拟议方法在聚类性能和计算时间方面的有效性。
translated by 谷歌翻译
分组和识别是视觉场景理解的重要组成部分,例如,用于对象检测和语义分割。借助端到端的深度学习系统,图像区域的分组通常通过像素级识别标签的自上而下的监督隐式进行。取而代之的是,在本文中,我们建议将分组机制恢复到深层网络中,从而使语义片段仅在文本监督下自动出现。我们提出了一个分层分组视觉变压器(GroupVit),它超出了常规的网格结构表示,并学会了将图像区域分组为逐渐更大的任意形状段。我们通过对比度损失在大规模图像文本数据集上与文本编码器共同训练小组vit。只有文本监督并且没有任何像素级注释,GroupVit就学会了将语义区域分组在一起,并以零拍的方式成功地将语义分割的任务转移到语义分割的任务,即,而没有任何进一步的微调。它在Pascal VOC 2012上获得了52.3%MIOU的零拍摄精度和Pascal上下文数据集中的22.4%MIOU,并竞争性地表现为需要更高水平监督的最先进的转移学习方法。我们在https://github.com/nvlabs/groupvit上开放代码。
translated by 谷歌翻译
在过去的几年中,基于深度卷积神经网络(CNN)的图像识别已取得了重大进展。这主要是由于此类网络在挖掘判别对象姿势以及质地和形状的零件信息方面具有强大的能力。这通常不适合细粒度的视觉分类(FGVC),因为它由于阻塞,变形,照明等而表现出较高的类内和较低的阶层差异。表征对象/场景。为此,我们提出了一种方法,该方法可以通过汇总大多数相关图像区域的上下文感知特征及其在区分细颗粒类别中避免边界框和/或可区分的零件注释中的重要性来有效捕获细微的变化。我们的方法的灵感来自最新的自我注意力和图形神经网络(GNNS)方法的启发端到端的学习过程。我们的模型在八个基准数据集上进行了评估,该数据集由细粒对象和人类对象相互作用组成。它的表现优于最先进的方法,其识别准确性很大。
translated by 谷歌翻译
对无监督对象发现的现有方法(UOD)不会向大大扩展到大型数据集,而不会损害其性能的近似。我们提出了一种新颖的UOD作为排名问题的制定,适用于可用于特征值问题和链接分析的分布式方法的阿森纳。通过使用自我监督功能,我们还展示了UOD的第一个有效的完全无监督的管道。对Coco和OpenImages的广泛实验表明,在每个图像中寻求单个突出对象的单对象发现设置中,所提出的LOD(大规模对象发现)方法与之相当于或更好地中型数据集的艺术(最多120K图像),比能够缩放到1.7M图像的唯一其他算法超过37%。在每个图像中寻求多个对象的多对象发现设置中,所提出的LOD平均精度(AP)比所有其他用于从20K到1.7M图像的数据的方法更好。使用自我监督功能,我们还表明该方法在OpenImages上获得最先进的UOD性能。我们的代码在HTTPS://github.com/huyvvo/lod上公开提供。
translated by 谷歌翻译
图形神经网络(GNN)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,事实证明,图形群集等图形上的重要无监督问题对GNN的进步具有更大的抵抗力。图群集的总体目标与GNN中的节点合并相同 - 这是否意味着GNN池方法在聚类图上做得很好?令人惊讶的是,答案是没有的 - 当前的GNN合并方法通常无法恢复群集结构,而在简单的基线(例如应用于学习的表示形式上的K-均值)良好工作的情况下。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中的不同信噪比情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督池方法,并显示了它如何解决现实世界图的挑战性聚类结构的恢复。同样,在现实世界中,我们表明DMON产生的高质量簇与地面真相标签密切相关,从而实现了最先进的结果,比不同指标的其他合并方法提高了40%以上。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are deep learning models designed to process attributed graphs. GNNs can compute cluster assignments accounting both for the vertex features and for the graph topology. Existing GNNs for clustering are trained by optimizing an unsupervised minimum cut objective, which is approximated by a Spectral Clustering (SC) relaxation. SC offers a closed-form solution that, however, is not particularly useful for a GNN trained with gradient descent. Additionally, the SC relaxation is loose and yields overly smooth cluster assignments, which do not separate well the samples. We propose a GNN model that optimizes a tighter relaxation of the minimum cut based on graph total variation (GTV). Our model has two core components: i) a message-passing layer that minimizes the $\ell_1$ distance in the features of adjacent vertices, which is key to achieving sharp cluster transitions; ii) a loss function that minimizes the GTV in the cluster assignments while ensuring balanced partitions. By optimizing the proposed loss, our model can be self-trained to perform clustering. In addition, our clustering procedure can be used to implement graph pooling in deep GNN architectures for graph classification. Experiments show that our model outperforms other GNN-based approaches for clustering and graph pooling.
translated by 谷歌翻译
随着各个领域的深度学习的巨大成功,图形神经网络(GNNS)也成为图形分类的主要方法。通过全局读出操作,只会聚合所有节点(或节点群集)表示,现有的GNN分类器获得输入图的图级表示,并使用表示来预测其类标签。但是,这种全局聚合不考虑每个节点的结构信息,这导致全局结构的信息丢失。特别地,它通过对所有节点表示来强制执行分类器的相同权重参数来限制辨别力;在实践中,他们中的每一个都有助于不同于其结构语义的目标类别。在这项工作中,我们提出了结构性语义读数(SSREAD)来总结位置级节点表示,这允许为分类模拟特定位置的权重参数,以及有效地捕获与全局结构相关的图形语义。给定输入图,SSREAD旨在通过使用其节点与结构原型之间的语义对齐来识别结构上有意义的位置,该结构原型编码每个位置的原型特征。结构原型经过优化,以最小化所有训练图的对准成本,而其他GNN参数训练以预测类标签。我们的实验结果表明,SSREAD显着提高了GNN分类器的分类性能和可解释性,同时兼容各种聚合函数,GNN架构和学习框架。
translated by 谷歌翻译
无监督的语义分割旨在在没有手动注释的情况下获得高级视觉功能的高级语义表示。大多数现有方法是基于其视觉提示或某些预定义规则尝试将像素分组为区域的自下而上的方法。因此,在具有多个对象的复杂场景和共享类似的视觉外观的某些对象时,这些自下而上的方法难以产生细粒度的语义分割。相比之下,我们提出了一个在极其复杂的情景中的细粒度分割的第一个自上而下的无监督语义分割框架。具体而言,我们首先以自我监督的学习方式从大规模视觉数据中获得丰富的高级结构化语义概念信息,并在发现目标数据集中呈现的潜在语义类别之前使用此类信息。其次,通过计算关于某些发现的语义表示的类激活地图(CAM)来计算发现的高电平语义类别以映射到低级像素特征。最后,所获得的凸轮用作伪标签,以培训分割模块并产生最终的语义分割。多个语义分割基准测试的实验结果表明,我们的自上而下的无监督分割对于对象为中心和以场景为中心的数据集,在不同的语义粒度水平下,并且优于所有最新的最先进的自下而上方法。我们的代码可用于\ URL {https://github.com/damo-cv/transfgugu}。
translated by 谷歌翻译
自我监督的视觉表现学习的目标是学习强大,可转让的图像表示,其中大多数研究专注于物体或场景水平。另一方面,在部分级别的代表学习得到了显着的关注。在本文中,我们向对象部分发现和分割提出了一个无人监督的方法,并进行三个贡献。首先,我们通过一系列目标构建一个代理任务,鼓励模型将图像的有意义分解成其部件。其次,先前的工作争辩地用于重建或聚类预先计算的功能作为代理的代理;我们凭经验展示了这一点,这种情况不太可能找到有意义的部分;主要是因为它们的低分辨率和分类网络到空间涂抹信息的趋势。我们建议像素水平的图像重建可以缓解这个问题,充当互补的提示。最后,我们表明基于Keypoint回归的标准评估与分割质量不符合良好,因此引入不同的指标,NMI和ARI,更好地表征对象的分解成零件。我们的方法产生了一致的细粒度但视觉上不同的类别的语义部分,优于三个基准数据集的现有技术。代码可在项目页面上找到:https://www.robots.ox.ac.uk/~vgg/research/unsup-parts/
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译