对具有无限宽度的神经网络的研究对于更好地理解实际应用中的神经网络很重要。在这项工作中,我们得出了深,无限宽度的Maxout网络和高斯过程(GP)的等效性,并用组成结构表征Maxout内核。此外,我们建立了深厚的Maxout网络内核与深神经网络内核之间的联系。我们还提供了有效的数值实现,可以适应任何麦克斯特等级。数值结果表明,与有限宽度的对应物和深神经网络内核相比,基于深层Maxout网络内核进行贝叶斯推论可能会导致竞争成果。这使我们启发了麦克斯的激活也可以纳入其他无限宽度神经网络结构,例如卷积神经网络(CNN)。
translated by 谷歌翻译
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks. * Both authors contributed equally to this work. † Work done as a member of the Google AI Residency program (g.co/airesidency). 1 Throughout this paper, we assume the conditions on the parameter distributions and nonlinearities are such that the Central Limit Theorem will hold; for instance, that the weight variance is scaled inversely proportional to the layer width.
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
How well does a classic deep net architecture like AlexNet or VGG19 classify on a standard dataset such as CIFAR-10 when its "width"-namely, number of channels in convolutional layers, and number of nodes in fully-connected internal layers -is allowed to increase to infinity? Such questions have come to the forefront in the quest to theoretically understand deep learning and its mysteries about optimization and generalization. They also connect deep learning to notions such as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in the infinite width limit trained by gradient descent; this object was implicit in some other recent papers. An attraction of such ideas is that a pure kernel-based method is used to capture the power of a fully-trained deep net of infinite width. The current paper gives the first efficient exact algorithm for computing the extension of NTK to convolutional neural nets, which we call Convolutional NTK (CNTK), as well as an efficient GPU implementation of this algorithm. This results in a significant new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], and only 6% lower than the performance of the corresponding finite deep net architecture (once batch normalization etc. are turned off). Theoretically, we also give the first non-asymptotic proof showing that a fully-trained sufficiently wide net is indeed equivalent to the kernel regression predictor using NTK.
translated by 谷歌翻译
为了更好地了解大型神经网络的理论行为,有几项工程已经分析了网络宽度倾向于无穷大的情况。在该制度中,随机初始化的影响和训练神经网络的过程可以与高斯过程和神经切线内核等分析工具正式表达。在本文中,我们审查了在这种无限宽度神经网络中量化不确定性的方法,并将它们与贝叶斯推理框架中的高斯过程的关系进行比较。我们利用沿途使用几个等价结果,以获得预测不确定性的确切闭合性解决方案。
translated by 谷歌翻译
深度高斯进程(DGP)使非参数方法能够量化复杂深机器学习模型的不确定性。 DGP模型的传统推理方法可以遭受高计算复杂性,因为它们需要使用核矩阵的大规模操作进行训练和推理。在这项工作中,我们提出了一种基于一系列高斯过程的准确推理和预测的有效方案,称为Tensor Markov高斯过程(TMGP)。我们构建称为分层扩展的TMGP的诱导近似。接下来,我们开发一个深入的TMGP(DTMGP)模型作为TMGPS的多个层次扩展的组成。所提出的DTMGP模型具有以下性质:(1)每个激活功能的输出是确定性的,而重量独立于标准高斯分布选择; (2)在训练或预测中,只有O(Polylog(M))(M)激活函数具有非零输出,这显着提高了计算效率。我们对实时数据集的数值实验显示了DTMGP与其他DGP型号的卓越计算效率。
translated by 谷歌翻译
神经网络和高斯过程的优势和劣势是互补的。更好地了解他们的关系伴随着使每个方法从另一个方法中受益的承诺。在这项工作中,我们建立了神经网络的前进通行证与(深)稀疏高斯工艺模型之间的等价。我们开发的理论是基于解释激活函数作为跨域诱导功能,通过对激活函数和内核之间的相互作用进行严格分析。这导致模型可以被视为具有改善的不确定性预测或深度高斯过程的神经网络,其具有提高的预测精度。这些权利要求通过对回归和分类数据集进行实验结果来支持。
translated by 谷歌翻译
Deep Gaussian工艺(DGP)作为贝叶斯学习的先验模型直观地利用功能组成中的表达能力。 DGP还提供了不同的建模功能,但是推断很具有挑战性,因为潜在功能空间的边缘化是无法处理的。借助Bochner定理,具有平方指数内核的DGP可以看作是由随机特征层,正弦和余弦激活单元以及随机重量层组成的深度三角网络。在具有瓶颈的宽极限中,我们表明重量空间视图产生了相同的有效协方差函数,该函数先前在功能空间中获得。同样,在网络参数上改变先前的分布相当于使用不同的内核。因此,DGP可以转换为深瓶颈触发网络,可以通过该网络获得确切的最大后验估计。有趣的是,网络表示可以研究DGP的神经切线核,这也可能揭示了棘手的预测分布的平均值。从统计上讲,与浅网络不同,有限宽度的深网具有与极限内核的协方差,并且内部和外部宽度可能在功能学习中起不同的作用。存在数值模拟以支持我们的发现。
translated by 谷歌翻译
近年来,人们对无限宽网络与高斯流程之间的对应关系产生了越来越多的兴趣。尽管当前的神经网络高斯过程理论具有有效性和优雅性,但据我们所知,所有神经网络高斯过程基本上都是通过增加宽度引起的。但是,在深度学习的时代,关于神经网络的更多关注是它的深度以及深度如何影响网络的行为。受宽度深度对称考虑因素的启发,我们使用快捷网络表明,增加神经网络的深度也会引起高斯过程,这是对现有理论的宝贵补充,并有助于揭示的真实情况深度学习。除了深入提出的高斯过程之外,我们从理论上表征了其均匀的紧密度和高斯工艺过程中最小的特征值。这些特征不仅可以增强我们对拟议深度引起的高斯过程的理解,而且还可以为未来的应用铺平道路。最后,我们通过对两个基准数据集的回归实验来检查提出的高斯过程的性能。
translated by 谷歌翻译
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature. 1
translated by 谷歌翻译
神经切线核是根据无限宽度神经网络的参数分布定义的内核函数。尽管该极限不切实际,但神经切线内核允许对神经网络进行更直接的研究,并凝视着黑匣子的面纱。最近,从理论上讲,Laplace内核和神经切线内核在$ \ Mathbb {S}}^{D-1} $中共享相同的复制核Hilbert空间,暗示了它们的等价。在这项工作中,我们分析了两个内核的实际等效性。我们首先是通过与核的准确匹配,然后通过与高斯过程的后代匹配来进行匹配。此外,我们分析了$ \ mathbb {r}^d $中的内核,并在回归任务中进行实验。
translated by 谷歌翻译
收购用于监督学习的标签可能很昂贵。为了提高神经网络回归的样本效率,我们研究了活跃的学习方法,这些方法可以适应地选择未标记的数据进行标记。我们提出了一个框架,用于从(与网络相关的)基础内核,内核转换和选择方法中构造此类方法。我们的框架涵盖了许多基于神经网络的高斯过程近似以及非乘式方法的现有贝叶斯方法。此外,我们建议用草图的有限宽度神经切线核代替常用的最后层特征,并将它们与一种新型的聚类方法结合在一起。为了评估不同的方法,我们引入了一个由15个大型表格回归数据集组成的开源基准。我们所提出的方法的表现优于我们的基准测试上的最新方法,缩放到大数据集,并在不调整网络体系结构或培训代码的情况下开箱即用。我们提供开源代码,包括所有内核,内核转换和选择方法的有效实现,并可用于复制我们的结果。
translated by 谷歌翻译
已知神经网络模型加强隐藏的数据偏差,使它们不可靠且难以解释。我们试图通过在功能空间中引入归纳偏差来构建“知道他们不知道的内容”。我们表明贝叶斯神经网络的定期激活功能在网络权重和平移 - 不变,静止的高斯过程前沿建立了连接之间的连接。此外,我们表明,通过覆盖三角波和周期性的Relu激活功能,该链接超出了正弦波(傅里叶)激活。在一系列实验中,我们表明定期激活功能获得了域内数据的可比性,并捕获对深度神经网络中的扰动输入的灵敏度进行域名检测。
translated by 谷歌翻译
缺乏对深度学习系统的洞察力阻碍了他们的系统设计。在科学和工程学中,建模是一种用于了解内部过程不透明的复杂系统的方法。建模用更简单的代理代替复杂的系统,该系统更适合解释。从中汲取灵感,我们使用高斯流程为神经网络构建了一类代理模型。我们没有从神经网络的某些限制案例中得出内核,而是从经验上从神经网络的自然主义行为中学习了高斯过程的内核。我们首先通过两项案例研究评估我们的方法,灵感来自先前对神经网络行为的理论研究,在这些案例研究中,我们捕获了学习低频的神经网络偏好,并确定了深层神经网络中的病理行为。在进一步的实践案例研究中,我们使用学识渊博的内核来预测神经网络的泛化特性。
translated by 谷歌翻译
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the non-parametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost O(n) for n training points, and predictions cost O(1) per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.
translated by 谷歌翻译
深神经网络(DNN)是用于压缩和蒸馏信息的强大工具。由于它们的规模和复杂性,通常涉及数十亿间相互作用的内部自由度,精确分析方法通常会缩短。这种情况下的共同策略是识别平均潜在的快速微观变量的不稳定行为的缓慢自由度。在这里,我们在训练结束时识别在过度参数化的深卷积神经网络(CNNS)中发生的尺度的分离。它意味着神经元预激活与几乎高斯的方式与确定性潜在内核一起波动。在对于具有无限许多频道的CNN来说,这些内核是惰性的,对于有限的CNNS,它们以分析的方式通过数据适应和学习数据。由此产生的深度学习的热力学理论产生了几种深度非线性CNN玩具模型的准确预测。此外,它还提供了新的分析和理解CNN的方法。
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
了解不同网络架构的能力和局限性对机器学习的根本重要性。高斯工艺的贝叶斯推断已被证明是一种可行的方法,用于研究无限层宽度的反复和深网络,$ n \ infty $。在这里,我们通过采用来自无序系统的统计物理学的建立方法,从第一个原则开始的架构的统一和系统的衍生均衡和系统的推导。该理论阐明了,虽然平均场方程关于其时间结构不同,但是当读出分别在单个时间点或层拍摄时,它们却产生相同的高斯核。贝叶斯推理应用于分类,然后预测两种架构的相同性能和能力。在数值上,我们发现朝向平均场理论的收敛通常对复发网络的速度较慢,而不是对于深网络,并且收敛速度仅取决于前面的重量的参数以及时间步骤的参数。我们的方法公开了高斯进程,但系统扩展的最低阶数为1 / N $。因此,形式主义铺平了调查有限宽度$ N $的经常性和深层架构之间的根本差异。
translated by 谷歌翻译
最近的作品表明,有限的贝叶斯神经网络有时可能会越优于其无限堂兄弟,因为有限网络可以灵活地调整其内部表示。然而,我们对有限网络的学习隐藏层表示如何与无限网络的固定表示不同的理论理解仍然不完整。研究了对网络的扰动有限宽度校正,但已经研究过的网络,但学习特征的渐近学尚未完全表征。在这里,我们认为具有线性读数和高斯可能性的任何贝叶斯网络的平均特征内核的领先有限宽度校正具有很大程度上的普遍形式。我们明确地说明了三个易行网络架构:深线性完全连接和卷积网络,以及具有单个非线性隐藏层的网络。我们的结果开始阐明任务相关的学习信号如何塑造宽阔的贝叶斯神经网络的隐藏层表示。
translated by 谷歌翻译
尽管通常认为在高维度中学习受到维度的诅咒,但现代的机器学习方法通​​常具有惊人的力量,可以解决广泛的挑战性现实世界学习问题而无需使用大量数据。这些方法如何打破这种诅咒仍然是深度学习理论中的一个基本开放问题。尽管以前的努力通过研究数据(D),模型(M)和推理算法(i)作为独立模块来研究了这个问题,但在本文中,我们将三胞胎(D,M,I)分析为集成系统和确定有助于减轻维度诅咒的重要协同作用。我们首先研究了与各种学习算法(M,i)相关的基本对称性,重点是深度学习中的四个原型体系结构:完全连接的网络(FCN),本地连接的网络(LCN)和卷积网络,而无需合并(有和没有合并)( GAP/VEC)。我们发现,当这些对称性与数据分布的对称性兼容时,学习是最有效的,并且当(d,m,i)三重态的任何成员不一致或次优时,性能会显着恶化。
translated by 谷歌翻译