目前正在辩论中,将人工智能应用于科学问题(即科学的AI)。但是,科学问题与传统的问题,图像,文本等等传统问题有很大不同,在这些问题中,由于不平衡的科学数据和物理设置的复杂效果出现了新的挑战。在这项工作中,我们证明了深卷卷神经网络(CNN)在存在强热波动和不平衡数据的情况下重建晶格拓扑(即自旋连接性)的有效性。以Glauber动力学为例,以动力学模型为例,CNN映射了从特定的初始配置(称为演化实例)演变为时期的局部磁矩(单个节点特征),以映射到概率的概率可能的耦合。我们的方案与以前可能需要有关节点动力学的知识,来自扰动的响应或统计量的评估(例如相关性或转移熵)与许多进化实例的评估。微调避免了高温下强烈的热波动引起的“贫瘠高原”。可以进行准确的重建,如果热波动在相关性上占主导地位,从而总体上失败的统计方法。同时,我们揭示了CNN的概括,以处理从不太初始旋转构型和带有未经晶格的实例演变而来的实例。我们在几乎“双重指数”大型样本空间中使用不平衡的数据提出了一个关于学习的公开问题。
translated by 谷歌翻译
状态制备是在量子物理学中的基本重要性,这可以通过将量子电路构造为整体来实现,该单一地将初始状态转换为目标,或者实现量子控制协议以设计的汉密尔顿人发展到目标状态。在这项工作中,我们通过用固定耦合和变分磁场的时间演变来研究后者对量子的数量。具体而言,我们考虑准备汉密尔顿人的地面州,其中包含汉密尔顿人的某些互动的互动,以时间进化。提出了一种优化方法来通过“微粒”的离散化来优化磁场,以获得高精度和稳定性。利用反向传播技术来获得违反对数保真度的字段的梯度。我们的方法在准备Heisenberg链的地面状态与XY和Ising互动的时间演变进行了准备,其性能超过了两种使用本地和全球优化策略的基线方法。我们的工作可以应用和推广到其他量子型号,例如在高维格子上定义的型号。它启示以降低所需交互的复杂性,以通过优化磁场实现量子信息和计算中的量子信息和其他任务。
translated by 谷歌翻译
量子点(QDS)阵列是一个有前途的候选系统,实现可扩展的耦合码头系统,并用作量子计算机的基本构建块。在这种半导体量子系统中,设备现在具有数十个,必须仔细地将系统仔细设置为单电子制度并实现良好的Qubit操作性能。必要点位置的映射和栅极电压的电荷提出了一个具有挑战性的经典控制问题。随着QD Qubits越来越多的QD Qubits,相关参数空间的增加充分以使启发式控制不可行。近年来,有一个相当大的努力自动化与机器学习(ML)技术相结合的基于脚本的算法。在这一讨论中,我们概述了QD器件控制自动化进展的全面概述,特别强调了在二维电子气体中形成的基于硅和GaAs的QD。将基于物理的型号与现代数值优化和ML相结合,证明在屈服高效,可扩展的控制方面已经证明非常有效。通过计算机科学和ML的理论,计算和实验努力的进一步整合,在推进半导体和量子计算平台方面具有巨大的潜力。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
突起从量子物理学起源的张量网络是古典和量子机学习的有效工具。然而,张量网络与古典机器学习的复杂神经网络模型仍然存在相当大的精度差距。在这项工作中,我们将矩阵产品状态(MPS),最简单的张量网络结构和残差神经网络的思想结合起来,提出了残余矩阵产品状态(Resmps)。 RESMP可以被视为其层,其中其层将“隐藏”特征映射到输出(例如,分类),并且层的变分参数是样本的特征(例如图像的像素)的功能。这与神经网络不同,其中层将向前映射到输出的功能。 RESMP可以用非线性激活和丢弃层配备,并且在效率,稳定性和表达功率方面优于最先进的张量网络模型。此外,Resmps是从多项式扩展的角度解释的,其中分解和指数机器自然出现。我们的工作有助于连接和杂交的神经和张量网络,这对进一步提高了我们了解工作机制并提高两种模型的性能至关重要。
translated by 谷歌翻译
优化在离散变量上的高度复杂的成本/能源功能是不同科学学科和行业的许多公开问题的核心。一个主要障碍是在硬实例中的某些变量子集之间的出现,导致临界减慢或集体冻结了已知的随机本地搜索策略。通常需要指数计算工作来解冻这种变量,并探索配置空间的其他看不见的区域。在这里,我们通过开发自适应梯度的策略来介绍一个量子启发的非本球非识别蒙特卡罗(NMC)算法,可以有效地学习成本函数的关键实例的几何特征。该信息随行使用,以构造空间不均匀的热波动,用于以各种长度尺度集体未填充变量,规避昂贵的勘探与开发权衡。我们将算法应用于两个最具挑战性的组合优化问题:随机k可满足(K-SAT)附近计算阶段转换和二次分配问题(QAP)。我们在专业的确定性求解器和通用随机求解器上观察到显着的加速和鲁棒性。特别是,对于90%的随机4-SAT实例,我们发现了最佳专用确定性算法无法访问的解决方案,该算法(SP)具有最强的10%实例的解决方案质量的大小提高。我们还通过最先进的通用随机求解器(APT)显示出在最先进的通用随机求解器(APT)上的时间到溶液的两个数量级改善。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
近年来,由于深度学习解决复杂的“物理”问题,近年来,基于计算的热管理方法的兴起已经取得了巨大的关注,否则难以使用常规技术难以接近。电子系统需要热管理,以防止它们过热和燃烧,提高其效率和寿命。长期以来,已经采用了数值技术来帮助热管理电子产品。但是,他们带来了一些限制。为了提高传统数值方法的有效性和解决传统方法所面临的缺点,研究人员在热管理过程的各个阶段使用人工智能。本研究详细讨论了“电子”热管理领域深度学习的当前用途。
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译
假设在某个时期,我们在未知图上为我们提供了一个耦合振荡器的系统以及系统的轨迹。我们可以预测系统最终是否同步?即使具有已知的基础图结构,这通常是一个重要但在分析上棘手的问题。在这项工作中,我们通过将其视为分类问题,基于任何给定系统最终将最终同步或收敛到非同步极限周期的事实来采用另一种方法来对同步预测问题。通过仅使用基础图(例如边缘密度和直径)的一些基本统计数据,当同步示例与非同步示例之间的基础图之间存在显着差异时,我们的方法可以达到完美的准确性。但是,在问题设置中,这些图形统计信息无法很好地区分这两个类(例如,当图形是从同一随机图模型生成的图形时),我们发现将初始动力学的一些迭代与图形统计数据配对为我们分类算法的输入可以导致准确性的显着提高;远远超过了经典振荡器理论所知的。更令人惊讶的是,我们发现在几乎所有此类设置中,删除了基本的图形统计信息,并仅使用初始动态来训练我们的算法几乎具有相同的精度。我们在三个连续和离散耦合振荡器的模型上演示了我们的方法 - 库拉莫托模型,萤火虫蜂窝自动机和绿色啤酒模型。最后,我们还提出了一种“集合预测”算法,该算法通过对从多个随机子图观察到的动力学进行训练,成功地将我们的方法扩展到大图。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
In my previous article I mentioned for the first time that a classical neural network may have quantum properties as its own structure may be entangled. The question one may ask now is whether such a quantum property can be used to entangle other systems? The answer should be yes, as shown in what follows.
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译