多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
基准标记通常用于导航辅助微创脊柱手术(Miss),他们帮助将图像坐标转移到现实世界坐标中。在实践中,这些标记可能位于视野(FOV)之外,由于术中手术中使用的C形臂锥形束计算机断层扫描(CBCT)系统的有限检测器尺寸。因此,CBCT体积中的重建标记遭受伪影并且具有扭曲的形状,其设定了导航的障碍。在这项工作中,我们提出了两个基准标记检测方法:直接检测从失真标记(直接方法)和标记恢复后检测(恢复方法)。为了直接检测重构体积中的失真标记,提出了一种使用两个神经网络和传统圆检测算法的有效的自动标记检测方法。对于标记恢复,提出了一种特定于任务的学习策略,以从严重截断的数据中恢复标记。之后,施加传统的标记检测算法用于位置检测。在模拟数据和实际数据上评估这两种方法,两者都可以实现小于0.2mm的标记配准误差。我们的实验表明,直接方法能够准确地检测扭曲的标记,并且具有任务特定学习的恢复方法对各种数据集具有高的鲁棒性和概括性。此外,特定于任务的学习能够准确地重建其他感兴趣的结构结构,例如,用于图像引导针活检的肋骨,来自严重截断的数据,从而使CBCT系统具有新的潜在应用。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
自动分割方法是医学图像分析的重要进步。特别是机器学习技术和深度神经网络,是最先进的大多数医学图像分割任务。类别不平衡的问题在医疗数据集中构成了重大挑战,病变通常占据相对于背景的相对于较小的体积。深度学习算法培训中使用的损失函数对类别不平衡的鲁棒性不同,具有模型收敛的直接后果。分割最常用的损耗函数基于交叉熵损耗,骰子丢失或两者的组合。我们提出了统一的联络损失,是一种新的分层框架,它概括了骰子和基于跨熵的损失,用于处理类别不平衡。我们评估五个公共可用的损失功能,类不平衡的医学成像数据集:CVC-ClinicDB,船舶提取数字视网膜图像(驱动器),乳房超声波2017(Bus2017),脑肿瘤分割2020(Brats20)和肾肿瘤分割2019 (套件19)。我们将损耗功能性能与六个骰子或基于跨熵的损耗函数进行比较,横跨二进制二进制,3D二进制和3D多包子分段任务,展示我们所提出的损失函数对类不平衡具有强大,并且始终如一地优于其他丢失功能。源代码可用:https://github.com/mlyg/unified-focal-loss
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
前列腺癌是美国男人的第二致致命癌症。虽然磁共振成像(MRI)越来越多地用于引导前列腺癌诊断的靶向活组织检查,但其效用仍然受到限制,因为假阳性和假否定的高率以及较低的读者协议。机器学习方法在前列腺MRI上检测和定位癌症可以帮助标准化放射科学诠释。然而,现有的机器学习方法不仅在模型架构中不等,而且还可以在用于模型培训的地面真理标签策略中。在这项研究中,我们比较不同的标记策略,即病理证实放射科标签,整个安装组织病理学图像上的病理学家标签,以及病变水平和像素级数字病理学家标签(先前验证了组织病理学图像上的深层学习算法以预测像素 - 整个安装组织病理学图像上的Gleason模式)。我们分析这些标签对训练有素的机器学习模型的性能的影响。我们的实验表明,用它们培训的(1)放射科标签和模型可能会错过癌症,或低估癌症程度,(2)与他们培训的数字病理学家标签和模型与病理学家标签有高度的一致性,而(3)用数字病理学家培训的模型标签在两种不同疾病分布的两种不同群组中达到最佳性能,而不管使用的模型建筑如何。数字病理学家标签可以减少与人类注释相关的挑战,包括劳动力,时间,和读者间变异性,并且可以通过使可靠的机器学习模型进行培训来检测和定位前列腺癌,帮助弥合前列腺放射学和病理学之间的差距在MRI。
translated by 谷歌翻译
基于深入的学习的诊断性能随着更多的注释数据而增加,但手动注释是大多数领域的瓶颈。专家在临床常规期间评估诊断图像,并在报告中写出他们的调查结果。基于临床报告的自动注释可以克服手动标记瓶颈。我们假设可以使用这些报告的稀疏信息引导的模型预测来生成用于检测任务的密度注释。为了证明疗效,我们在放射学报告中临床显着发现的数量指导的临床上显着的前列腺癌(CSPCA)注释。我们包括7,756个前列腺MRI检查,其中3,050人被手动注释,4,706次自动注释。我们对手动注释的子集进行了自动注释质量:我们的得分提取正确地确定了99.3 \%$ 99.3 \%$ 99.3 \%$的CSPCA病变数量,我们的CSPCA分段模型正确地本地化了83.8 \ PM 1.1 \%$的病变。我们评估了来自外部中心的300名检查前列腺癌检测表现,具有组织病理学证实的基础事实。通过自动标记的考试增强培训集改善了在接收器的患者的诊断区域,从$ 88.1 \ pm 1.1 \%$至89.8 \ pm 1.0 \%$($ p = 1.2 \ cdot 10 ^ { - 4} $ )每案中的一个错误阳性的基于病变的敏感性,每案件从79.2美元2.8 \%$ 85.4 \ PM 1.9 \%$($ P <10 ^ { - 4} $),以$ alm \ pm std。$超过15个独立运行。这种改进的性能展示了我们报告引导的自动注释的可行性。源代码在https://github.com/diagnijmegen/report-guiding-annotation上公开可用。最佳的CSPCA检测算法在https://grand-challenge.org/algorithms/bpmri-cspca-detection-report-guiding-annotations/中提供。
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
MRI图像中的脑肿瘤分析是一个重要而挑战性的问题,因为误诊可能导致死亡。脑肿瘤在早期阶段的诊断和评估增加了成功治疗的概率。然而,肿瘤,形状和位置的复杂性和各种使其分割和分类复合物。在这方面,许多研究人员提出了脑肿瘤细分和分类方法。本文使用含有MRI图像增强和肿瘤区检测的框架,呈现了一种同时分段和分类MRI图像中的脑肿瘤的方法。最终,提出了一种基于多任务学习方法的网络。主观和客观结果表明,基于评估指标的分割和分类结果更好或与最先进的。
translated by 谷歌翻译
风险的准确器官(OAR)分割对于减少治疗后并发症的放射治疗至关重要。达人指南推荐头部和颈部(H&N)区域的一套超过40桨的桨,然而,由于这项任务的可预测的禁止劳动力成本,大多数机构通过划定较小的桨子和忽视的少数,选择了大量简化的协议与其他桨相关的剂量分布。在这项工作中,我们提出了一种使用深度学习的新颖,自动化和高效的分层OAR分段(SOARS)系统,精确地描绘了一套全面的42 H&N OAR。 SOARS将42桨分层进入锚,中级和小型和硬质子类别,通过神经结构搜索(NAS)原则,专门为每个类别提供神经网络架构。我们在内在机构中使用176名培训患者建立了SOAR模型,并在六个不同的机构中独立评估了1327名外部患者。对于每个机构评估,它始终如一地表现出其他最先进的方法至少3-5%的骰子得分(在其他度量的相对误差减少36%)。更重要的是,广泛的多用户研究明显证明,98%的SOARE预测只需要非常轻微或没有直接临床验收的修订(节省90%的辐射脑神经工作负载),并且它们的分割和剂量准确度在于或小于帧 - 用户的变化。这些调查结果证实了H&N癌症放射疗法工作流OAR描绘过程的强烈临床适用性,提高了效率,全面性和质量。
translated by 谷歌翻译
胶质母细胞瘤多形状(GBM)是一种恶性脑癌,形成约占Al脑和中枢神经系统(CNS)癌症的48%。据估计,由于GBM,美国每年发生超过13,000人死亡,使得具有可能导致可预测和有效的治疗的早期诊断系统至关重要。 GBM诊断后最常见的治疗方法是化疗,通过将迅速的分割细胞发送到凋亡。然而,当MgMT启动子序列甲基化时,这种形式的治疗无效,并且导致严重的副作用降低患者生存性。因此,重要的是能够通过基于非侵入性磁共振成像(MRI)的机器学习(ML)模型来鉴定MGMT启动子甲基化状态。这是使用脑肿瘤分割(BRALS)2021数据集完成的,该数据集最近用于国际摇臂竞争。我们开发了四种初级模型 - 两个辐射模型和两个CNN型号 - 每次解决具有逐步改进的二进制分类任务。我们构建了一种称为中间状态发生器称为中间状态发生器的新型ML模型,用于归一化所有MRI扫描的切片厚度。通过进一步的改进,我们最好的模型能够显着达到性能(P <0.05 $),比最佳性能的滑动模型更好,平均交叉验证精度增加6%。这种改进可能导致更明智的化疗选择作为治疗选择,每年延长成千上万的GBM患者的生命。
translated by 谷歌翻译