深度学习模型通过从训练的数据集学习来提供图像处理的令人难以置信的结果。菠菜是一种含有维生素和营养素的叶蔬菜。在我们的研究中,已经使用了一种可以自动识别菠菜的深度学习方法,并且该方法具有总共五种菠菜的数据集,其中包含3785个图像。四种卷积神经网络(CNN)模型用于对我们的菠菜进行分类。这些模型为图像分类提供更准确的结果。在应用这些模型之前,存在一些预处理图像数据。为了预处理数据,需要发生一些方法。那些是RGB转换,过滤,调整大小和重新划分和分类。应用这些方法后,图像数据被预处理并准备好在分类器算法中使用。这些分类器的准确性在98.68%至99.79%之间。在这些模型中,VGG16实现了99.79%的最高精度。
translated by 谷歌翻译
希尔萨是孟加拉国的国家鱼。孟加拉国通过出口这条鱼赚了很多外币。不幸的是,最近几天,一些肆无忌惮的商人正在销售假的HILSA鱼类来获得利润。沙丁鱼和撒丁岛是市场上最销售的希尔萨。孟加拉国政府机构,即孟加拉国食品安全管理局表示,这些假希腊鱼类含有高水平的镉和铅,这对人类有害。在这项研究中,我们提出了一种可以容易地识别原始HILSA鱼和假HILSA鱼的方法。基于在线文学上的研究,我们是第一个识别原始HILSA鱼的研究。我们收集了超过16,000个原装和假冒Hilsa鱼的图像。要对这些图像进行分类,我们使用了几种基于深度学习的模型。然后,在它们之间比较了性能。在这些模型中,Densenet201实现了97.02%的最高精度。
translated by 谷歌翻译
深度学习目前是机器学习中最重要的分支,在语音识别,计算机视觉,图像分类和医学成像分析中的应用。植物识别是可以使用图像分类通过其叶子识别植物物种的领域之一。植物学家通过亲自检查将大量时间用于识别植物物种。本文描述了一种剖析瑞典叶子和识别植物物种的颜色图像的方法。为了实现更高的准确性,该任务是在预先训练的分类器VGG-19的帮助下使用转移学习完成的。分类的四个主要过程是图像预处理,图像增强,特征提取和识别,这些过程是作为整体模型评估的一部分进行的。 VGG-19分类器通过采用预定义的隐藏层(例如卷积层,最大池层和完全连接的层)来掌握叶子的特征,并最终使用Soft-Max层为所有植物类生成特征表示。该模型获得了与瑞典叶数据集的各个方面相关的知识,其中包含15种树类,并有助于预测未知植物的适当类别,准确性为99.70%,这比以前报告的研究工作高。
translated by 谷歌翻译
农业是人类社会的支柱,因为它对每个生物体都是必需的。就人类而言,帕迪种植非常重要,主要是亚洲大陆,这是主食食品之一。然而,农业中的植物疾病导致生产力枯竭。植物疾病通常是由害虫,昆虫和病原体引起的,如果在特定时间内不受控制,它们的生产力将大规模降低至大规模。最终,人们看不到稻田产量的增加。准确,及时识别植物疾病可以帮助农民减轻由于害虫和疾病而导致的损失。最近,深度学习技术已被用来识别稻田疾病并克服这些问题。本文基于模型实现了卷积神经网络(CNN),并测试了由636个红外图像样本组成的公共数据集,其中有五个帕迪病类别和一个健康的类别。拟议的模型熟练地识别和分类的五种不同类型的帕迪疾病,准确度为88.28%
translated by 谷歌翻译
植物疾病是全球作物损失的主要原因,对世界经济产生了影响。为了解决这些问题,智能农业解决方案正在发展,将物联网和机器学习结合起来,以进行早期疾病检测和控制。许多这样的系统使用基于视觉的机器学习方法进行实时疾病检测和诊断。随着深度学习技术的发展,已经出现了新方法,这些方法采用卷积神经网络进行植物性疾病检测和鉴定。基于视觉的深度学习的另一个趋势是使用视觉变压器,事实证明,这些变压器是分类和其他问题的强大模型。但是,很少研究视力变压器以进行植物病理应用。在这项研究中,为植物性疾病鉴定提出了一个启用视觉变压器的卷积神经网络模型。提出的模型将传统卷积神经网络的能力与视觉变压器有效地识别出多种农作物的大量植物疾病。拟议的模型具有轻巧的结构,只有80万个可训练的参数,这使其适合基于物联网的智能农业服务。 PlantXvit的性能在五个公开可用的数据集上进行了评估。拟议的PlantXvit网络在所有五个数据集上的性能要比五种最先进的方法更好。即使在挑战性的背景条件下,识别植物性疾病的平均准确性分别超过了苹果,玉米和稻米数据集的93.55%,92.59%和98.33%。使用梯度加权的类激活图和局部可解释的模型不可思议的解释来评估所提出模型的解释性效率。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
农业实践中的一个重要和繁琐的任务之一是检测作物疾病。它需要巨大的时间和熟练的劳动力。本文提出了一种智能有效的方法,用于检测使用计算机视觉和机器学习技术的作物疾病。该拟议的系统能够检测5种常见植物的20个不同疾病,精度为93%。
translated by 谷歌翻译
现代科学和技术进步使植物学家可以使用基于计算机视觉的方法进行植物识别任务。这些方法有自己的挑战。叶片分类是针对自动识别植物物种执行的计算机视觉任务,这是由于叶片形态的变化,包括其大小,质地,形状和静脉,这是一个严重的挑战。由于普及和成功实施图像分析,对象识别和语音识别,研究人员最近越来越倾向于基于深度学习的方法,而不是基于传统特征的方法。在本文中,要拥有一个可解释且可靠的系统,通过提出一种通过三个基于深度学习的模型开发出高效的最大行为相似之处的高效方法,以叶片识别建模。可视化三个模型的不同层,以确保对植物学家的行为进行准确的建模。第一和第二型型号是从头开始设计的。关于第三个模型,采用了预培训的MobilenetV2与转移学习技术一起使用。在两个著名的数据集上评估了所提出的方法:Flavia和Malayakew。根据比较分析,建议的方法比手工制作的特征提取方法和其他深度学习技术更准确,而精度为99.67%和99.81%。与具有自己特定复杂性并依赖数据集的传统技术不同,所提出的方法不需要手工制作的功能提取。同样,与其他深度学习技术相比,它可以提高准确性。此外,SWP叶出现的分布且比其他方法要快得多,因为使用了较少的参数,因此异步使用了较少的参数。
translated by 谷歌翻译
全球一百多个国家的主食是大米(Oryza sativa)。大米的种植对于全球经济增长至关重要。但是,农业产业面临的主要问题是水稻疾病。农作物的质量和数量下降了,这是主要原因。由于任何国家的农民对水稻疾病都没有太多了解,因此他们无法正确诊断稻叶疾病。这就是为什么他们不能适当照顾米叶的原因。结果,生产正在减少。从文献调查中,Yolov5表现出更好的结果与其他深度学习方法相比。由于对象检测技术的不断发展,Yolo家族算法具有非常高的精度和更好的速度,已在各种场景识别任务中使用,以构建稻叶疾病监测系统。我们已经注释了1500个收集的数据集,并提出了基于Yolov5深学习的水稻疾病分类和检测方法。然后,我们训练并评估了Yolov5模型。模拟结果显示了本文提出的增强Yolov5网络的对象检测结果的改进。所需的识别精度,召回,MAP值和F1得分的水平分别为90 \%,67 \%,76 \%和81 \%\%被视为性能指标。
translated by 谷歌翻译
在该研究中,提出了一种具有贝叶斯优化(ADSNN-BO)的关注深度可分离的神经网络,以检测和分类稻米图像的水稻疾病。水稻疾病经常导致20至40%的公司生产损失的产量,与全球经济有关。快速疾病鉴定对于计划及时计划治疗并减​​少CORP损失至关重要。水稻疾病诊断仍然主要是手动进行的。为实现AI辅助快速准确的疾病检测,我们提出了基于MobileNet结构的Adsnn-Bo模型和增强注意机制。此外,贝叶斯优化方法应用于调整模型的超级参数。交叉验证的分类实验是基于公共米病数据集进行的,总共有四个类别。实验结果表明,我们的移动兼容ADSNN-BO模型实现了94.65 \%的测试精度,这占据了所有最先进的模型。为了检查我们所提出的模型的可解释性,还进行了包括激活图和过滤器可视化方法的特征分析。结果表明,我们提出的基于关注机制可以更有效地引导Adsnn-Bo模型学习信息性功能。本研究的结果将促进农业领域快速植物疾病诊断和控制的人工智能。
translated by 谷歌翻译
需要快速,准确且负担得起的水稻疾病检测方法来协助水稻农民解决设备和专业短缺问题。在本文中,我们专注于使用计算机视觉技术来检测稻田照片图像的水稻疾病的解决方案。由于各种环境因素,处理普通农民在现实通用情况下处理的图像非常具有挑战性,而稻叶对象大小的变化是导致绩效等级的主要因素。为了解决这个问题,我们提出了一项技术,该技术将CNN对象检测与图像平铺技术结合在一起,基于图像中稻叶的自动估计宽度尺寸,作为将原始输入图像划分的尺寸参考。通过小型CNN(例如18层重新连接体系结构模型)创建了一个用于估计叶片宽度的模型。生成了一个新的,具有均匀尺寸的物体的新的瓷砖子图像集,并用作训练水稻疾病预测模型的输入。我们的技术对八种不同类型的水稻疾病的4,960张图像进行了评估,包括爆炸,枯萎病,棕色点,狭窄的棕色点,橙色,红色条纹,稻草特技病毒和条纹疾病。在所有八个类中评估的叶宽度预测任务的平均绝对百分比误差(MAPE)在实验中为11.18%,表明叶宽度预测模型的性能很好。训练和测试使用瓷砖数据集进行了训练和测试时,Yolov4体系结构预测性能的平均平均精度(地图)的平均精度(地图)的平均精度(地图)的平均精度(地图)提高到91.14%。根据我们的研究,提出的图像平铺技术提高了水稻疾病的检测效率。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
大芬基的物种鉴定,即蘑菇,一直是一项具有挑战性的任务。仍然有大量有毒的蘑菇,这对人们的生命构成了风险。但是,传统的识别方法需要大量在手动识别的分类学领域具有知识的专家,而且不仅效率低下,而且消耗了大量的人力和资本成本。在本文中,我们提出了一个基于注意力机构的新模型,Mushroomnet,该模型将轻型网络MobilenetV3应用于骨干模型,并结合了我们提出的注意力结构,并在蘑菇识别任务中实现了出色的性能。在公共数据集上,Mushroomnet模型的测试准确性已达到83.9%,在本地数据集上,测试精度已达到77.4%。提出的注意机制很好地将注意力集中在蘑菇图像的身体上,以进行混合通道注意力,并通过GRAD-CAM可视化的注意热图。此外,在这项研究中,将遗传距离添加到蘑菇图像识别任务中,将遗传距离用作表示空间,并且数据集中每对蘑菇物种之间的遗传距离被用作遗传距离表示的嵌入空间,以预测图像距离和物种。确认。我们发现,使用MES激活函数可以很好地预测蘑菇的遗传距离,但精度低于软疗法。拟议的蘑菇网已被证明,它显示出自动和在线蘑菇图像的巨大潜力,拟议的自动程序将有助于并参考传统的蘑菇分类。
translated by 谷歌翻译
Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup. Hair and scalp-related diseases often go unnoticed in the beginning. Sometimes, a patient cannot differentiate between hair loss and regular hair fall. Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests. Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness. Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors. These applications assist clinicians and patients and provide an initial insight into early-stage symptoms. In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis. However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging. 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate. After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.2%, with a validation accuracy of 91.1%. The precision and recall score of alopecia, psoriasis, and folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a dataset of the scalp images for future prospective researchers.
translated by 谷歌翻译
由生物声监测设备组成的无线声传感器网络运行的专家系统的部署,从声音中识别鸟类物种将使许多生态价值任务自动化,包括对鸟类种群组成的分析或濒危物种的检测在环境感兴趣的地区。由于人工智能的最新进展,可以将这些设备具有准确的音频分类功能,其中深度学习技术出色。但是,使生物声音设备负担得起的一个关键问题是使用小脚印深神经网络,这些神经网络可以嵌入资源和电池约束硬件平台中。因此,这项工作提供了两个重型和大脚印深神经网络(VGG16和RESNET50)和轻量级替代方案MobilenetV2之间的批判性比较分析。我们的实验结果表明,MobileNetV2的平均F1得分低于RESNET50(0.789 vs. 0.834)的5 \%,其性能优于VGG16,其足迹大小近40倍。此外,为了比较模型,我们创建并公开了西部地中海湿地鸟类数据集,其中包括201.6分钟和5,795个音频摘录,摘录了20种特有鸟类的aiguamolls de l'empord \ e empord \`一个自然公园。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
全景牙科射线照相(PDR)图像处理是法医医学中最广泛使用的方法之一。深度学习模型由于其高处理速度,准确性和稳定性而被广泛用于当今放射学图像的自动分析。提出了一些使用转移学习的方法来分类PDR图像。在这项研究中,使用了Densenet121卷积神经网络(CNN)分类器,该分类器是预先训练的深度学习体系结构之一。提出的Densenet121网络已在最后一层之前进行了几层扩展和微调,以提高其从数据中理解更复杂模式的能力。在此阶段结束时,它已经通过包含PDR图像的牙科数据集进行了培训,并变得更有经验。采用了K折的交叉验证方法来提高所提出的Densenet121模型的准确性。在这项研究中,对于4,800个测试数据集的分类精度为97.25%,实现了最佳性能。提出的模型以及基于Grad-CAM的分析还表明,下颌骨和牙齿是性别分类中最重要的领域。
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
本文提议使用修改的完全连接层转移初始化,以进行1900诊断。卷积神经网络(CNN)在图像分类中取得了显着的结果。但是,由于图像识别应用程序的复杂性,培训高性能模型是一个非常复杂且耗时的过程。另一方面,转移学习是一种相对较新的学习方法,已在许多领域使用,以减少计算来实现良好的性能。在这项研究中,Pytorch预训练的模型(VGG19 \ _bn和WideresNet -101)首次在MNIST数据集中应用于初始化,并具有修改的完全连接的层。先前在Imagenet中对使用的Pytorch预培训模型进行了培训。提出的模型在Kaggle笔记本电脑中得到了开发和验证,并且在网络培训过程中没有花费巨大的计算时间,达到了99.77%的出色精度。我们还将相同的方法应用于SIIM-FISABIO-RSNA COVID-19检测数据集,并达到80.01%的精度。相比之下,以前的方法在训练过程中需要大量的压缩时间才能达到高性能模型。代码可在以下链接上找到:github.com/dipuk0506/spinalnet
translated by 谷歌翻译
在本文中,使用聚类和阈值算法实现了DIBA数据集细菌属和物种的半自动注释。深度学习模型经过训练,以实现细菌物种的语义分割和分类。分类精度达到95%。深度学习模型在生物医学图像处理中发现了巨大的应用。从革兰氏阴性微观图像中自动分割细菌对于诊断呼吸道和尿路感染,检测癌症等至关重要。深度学习将有助于生物学家在更少的时间内获得可靠的结果。此外,可以减少许多人类干预措施。这项工作可能有助于检测尿液涂片图像,痰液涂片图像等的细菌,以诊断尿路感染,结核病,肺炎等。
translated by 谷歌翻译