这项工作提出了一种随机变化深内核学习方法,用于从高维噪声数据中发现低维动力学模型的数据驱动。该框架由一个编码器组成,该编码器将高维测量值压缩为低维状态变量,以及用于状态变量的潜在动力学模型,该模型可以预测随时间时间的系统演化。提出的模型的培训是以无监督的方式进行的,即不依赖标记的数据。我们的学习方法是根据摆锤的运动进行评估的,这是通过高维嘈杂的RGB图像测量的非线性模型识别和对照的良好研究基线。结果表明,该方法可以有效地确定测量,学习紧凑的状态表示和潜在的动力学模型,并识别和量化建模不确定性。
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
根据数据得出的模型的顺序/维度通常受观测值的数量或受监视系统(传感节点)的上下文的限制。对于结构系统(例如,民用或机械结构)尤其如此,这通常是高维本质上的。在物理知识的机器学习范围内,本文提出了一个框架(称为神经模态odes),以将基于物理学的建模与深度学习(尤其是神经通用差分方程 - 神经odes)整合在一起,以建模受监视和高的动态。 - 维工程系统。在这种启动探索中,我们将自己限制在线性或轻度非线性系统中。我们提出了一种结构,该体系结构将变异自动编码器的动态版本与物理信息的神经odes(Pi-神经odes)融合在一起。作为自动编码器的一部分,编码器从观测数据的前几个项目到潜在变量的初始值学习了抽象映射,从而驱动通过物理知识的神经odes学习嵌入式动力学,并施加\ textit {模态模型}该潜在空间的结构。所提出的模型的解码器采用了从应用于基于物理学模型的线性化部分的本征分析中得出的本征模:一种隐含携带自由度(DOFS)之间的空间关系的过程。该框架在数值示例中得到了验证,以及一个缩放的电缆固定桥的实验数据集,在该数据集中,学到的混合模型被证明胜过纯粹基于物理的建模方法。我们进一步显示了在虚拟传感的上下文中,即从空间稀疏数据中恢复了未衡量的DOF中的广义响应量。
translated by 谷歌翻译
最近的机器学习(ML)和深度学习(DL)的发展增加了所有部门的机会。 ML是一种重要的工具,可以应用于许多学科,但其直接应用于土木工程问题可能是挑战性的。在实验室中模拟的土木工程应用程序通常在现实世界测试中失败。这通常归因于用于培训和测试ML模型的数据之间的数据不匹配以及它在现实世界中遇到的数据,称为数据偏移的现象。然而,基于物理的ML模型集成了数据,部分微分方程(PDE)和数学模型以解决数据移位问题。基于物理的ML模型训练,以解决监督学习任务,同时尊重一般非线性方程描述的任何给定的物理定律。基于物理的ML,它在许多科学学科中占据中心阶段,在流体动力学,量子力学,计算资源和数据存储中起着重要作用。本文综述了基于物理学的ML历史及其在土木工程中的应用。
translated by 谷歌翻译
We introduce Embed to Control (E2C), a method for model learning and control of non-linear dynamical systems from raw pixel images. E2C consists of a deep generative model, belonging to the family of variational autoencoders, that learns to generate image trajectories from a latent space in which the dynamics is constrained to be locally linear. Our model is derived directly from an optimal control formulation in latent space, supports long-term prediction of image sequences and exhibits strong performance on a variety of complex control problems.
translated by 谷歌翻译
我们开发了包含几何信息和拓扑信息的数据驱动方法,以从观察值中学习非线性动力学的简约表示。我们开发了使用与变异自动编码器(VAE)相关的训练策略来学习一般歧管潜在空间动力学的非线性状态空间模型的方法。我们的方法称为几何动力学(GD)变化自动编码器(GD-VAE)。我们根据包括一般多层感知器(MLP),卷积神经网络(CNNS)和转置CNN(T-CNN)在内的深层神经网络体系结构学习系统状态和进化的编码器和分解器。由参数化的PDE和物理学引起的问题的促进,我们研究了我们在学习非线性汉堡方程,约束机械系统和反应扩散系统的空间场的低维表示任务方面的性能。 GD-VAE提供了用于获取表示涉及动态任务的表示形式的方法。
translated by 谷歌翻译
物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域 - 不可吻合,数据驱动的模型是普遍的,物理知识 - 通常表示为微分方程 - 很有价值,因为它与数据是互补的,并且可能有可能帮助克服问题例如数据稀疏性,噪音和不准确性。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,与未知的源术语完全或不完整,等等。基于内核分化,我们在示例目标函数,方程相关的衍生物和潜在源函数之前构建了GP,这些函数全部来自多元高斯分布。采样值被馈送到两个可能性:一个以适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。
translated by 谷歌翻译
动态系统的建模和仿真是许多控制方法的必要步骤。使用基于参数的基于参数的技术来建模现代系统,例如软机器人或人机交互,由于系统动态的复杂性,通常是挑战甚至不可行的。相比之下,数据驱动方法只需要最少的先验知识和规模,并以系统的复杂性规模。特别地,高斯过程动态模型(GPDMS)为复杂动态的建模提供了非常有前途的结果。然而,这些GP模型的控制特性刚刚稀疏地研究,这导致了建模和控制方案中的“黑箱”处理。此外,GPDMS对预测目的的采样,尊重其非参数性的非公平性,使得理论分析具有挑战性。在本文中,我们呈现近似的GPDM,它是马尔可夫的并分析它们的控制理论特性。其中,分析了近似的误差,提供了轨迹的界限条件。结果用数字示例说明,该数值示例显示近似模型的功率,而计算时间显着降低。
translated by 谷歌翻译
Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
translated by 谷歌翻译
在许多领域,包括强化学习和控制在内的许多领域,从一系列高维观测中学习或识别动力学是一个困难的挑战。最近通过潜在动力学从生成的角度研究了这个问题:将高维观测结果嵌入到较低维的空间中,可以在其中学习动力学。尽管取得了一些成功,但尚未将潜在动力学模型应用于现实世界的机器人系统,在这些机器人系统中,学习的表示形式必须适合各种感知混杂和噪声源。在本文中,我们提出了一种共同学习潜在状态表示的方法以及在感知困难条件下的长期计划和闭环控制的相关动力。作为我们的主要贡献,我们描述了我们的表示如何能够通过检测新颖或分布(OOD)输入来捕获测试时间的异质或输入特异性不确定性的概念。我们介绍了有关两个基于图像的任务的预测和控制实验的结果:一个模拟的摆平衡任务和实现任务的现实世界机器人操纵器。我们证明,与仅在不同程度的输入降解的情况下,我们的模型可产生更准确的预测,并表现出改善的控制性能。
translated by 谷歌翻译
估计河床型材,也称为沐浴型,在许多应用中起着至关重要的作用,例如安全有效的内陆导航,对银行侵蚀,地面沉降和洪水风险管理的预测。直接沐浴术调查的高成本和复杂物流,即深度成像,鼓励使用间接测量,例如表面流速。然而,从间接测量估计高分辨率的沐浴族是可以计算地具有挑战性的逆问题。在这里,我们提出了一种基于阶的模型(ROM)的方法,其利用变形的自动化器(VAE),一系列深神经网络,中间具有窄层,以压缩沐浴族和流速信息并加速沐浴逆问题流速测量。在我们的应用中,浅水方程(SWE)具有适当的边界条件(BCS),例如排出和/或自由表面升高,构成前向问题,以预测流速。然后,通过变分编码器在低维度的非线性歧管上构造SWES的ROM。利用不确定性量化(UQ)的估计在贝叶斯环境中的低维潜空间上执行。我们已经在美国萨凡纳河的一英里接触到美国,测试了我们的反转方法。一旦培训了神经网络(离线阶段),所提出的技术就可以比通常基于线性投影的传统反转方法更快地执行幅度的反转操作级,例如主成分分析(PCA)或主要成分地质统计方法(PCGA)。此外,即使具有稀疏的流速测量,测试也可以估计算法估计良好的精度均匀的浴权。
translated by 谷歌翻译
最近的机器学习进展已直接从数据中直接提出了对未知连续时间系统动力学的黑盒估计。但是,较早的作品基于近似ODE解决方案或点估计。我们提出了一种新型的贝叶斯非参数模型,该模型使用高斯工艺直接从数据中直接从数据中推断出未知ODE系统的后代。我们通过脱钩的功能采样得出稀疏的变异推断,以表示矢量场后代。我们还引入了一种概率的射击增强,以从任意长的轨迹中有效推断。该方法证明了计算矢量场后代的好处,预测不确定性得分优于多个ODE学习任务的替代方法。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
所有物理定律都被描述为状态变量之间的关系,其提供相关系统动态的完整和非冗余描述。然而,尽管计算功率和AI的普及,但识别隐藏状态变量本身的过程已经抵制了自动化。用于建模物理现象的大多数数据驱动方法仍然假设观察到的数据流已经对应于相关状态变量。关键挑战是仅给予高维观察数据,从头开始识别可能的状态变量集。在这里,我们提出了一种新的原理,用于确定观察到的系统可能具有多少状态变量,以及这些变量可以直接来自视频流。我们展示了使用各种物理动态系统的视频录制的这种方法的有效性,从弹性双摆到火焰。如果没有任何相关的物理知识,我们的算法发现观察到的动态的内在尺寸,并识别候选州变量集。我们建议这种方法可以帮助促进对越来越复杂的系统的理解,预测和控制。项目网站是:https://www.cs.columbia.edu/~bchen/nebural-tate-variables
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
Spatiotemporal imaging has applications in e.g. cardiac diagnostics, surgical guidance, and radiotherapy monitoring, In this paper, we explain the temporal motion by identifying the underlying dynamics, only based on the sequential images. Our dynamical model maps the inputs of observed high-dimensional sequential images to a low-dimensional latent space wherein a linear relationship between a hidden state process and the lower-dimensional representation of the inputs holds. For this, we use a conditional variational auto-encoder (CVAE) to nonlinearly map the higher-dimensional image to a lower-dimensional space, wherein we model the dynamics with a linear Gaussian state-space model (LG-SSM). The model, a modified version of the Kalman variational auto-encoder, is end-to-end trainable, and the weights, both in the CVAE and LG-SSM, are simultaneously updated by maximizing the evidence lower bound of the marginal likelihood. In contrast to the original model, we explain the motion with a spatial transformation from one image to another. This results in sharper reconstructions and the possibility of transferring auxiliary information, such as segmentation, through the image sequence. Our experiments, on cardiac ultrasound time series, show that the dynamic model outperforms traditional image registration in execution time, to a similar performance. Further, our model offers the possibility to impute and extrapolate for missing samples.
translated by 谷歌翻译
在研究和实践中,近几十年来,机器学习(ML)取得了巨大的成功。在网络物理系统(CPS)中,ML例如用于优化系统,以检测异常或识别系统故障的根本原因。然而,现有算法遭受了两个主要缺点:(i)他们很难被人类专家解释。 (ii)将一个系统转移到另一个系统(类似)系统的结果通常是一个挑战。概念学习,或代表学习(Repl),是两个缺点的解决方案;模仿人的解决方案方法来解释能力和转移能力:通过学习诸如物理量或系统状态的一般概念,模型由人类解释。此外,这种抽象水平的概念通常可以应用于各种不同的系统。现代ML方法已广泛用于CPS,但到目前为止,概念学习和转移学习几乎不使用。在本文中,我们提供了关于在时间序列数据中学习物理概念的方法的当前研究状态的概述,这是CPS的传感器数据的主要形式。我们还使用三箱系统的示例来分析来自现有技术的最重要的方法。基于这些混凝土实现1,我们讨论了方法的优缺点,并显示了哪些目的,并且可以在其中使用它们的条件。
translated by 谷歌翻译
基于部分微分方程的物理模拟通常会生成空间场结果,这些结果可用于计算系统设计和优化系统的特定属性。由于模拟的密集计算负担,替代模型将低维输入映射到空间场通常是基于相对较小的数据集构建的。为了解决预测整个空间场的挑战,流行的核心区域线性线性模型(LMC)可以在高维空间场输出中解散复杂的相关性,并提供准确的预测。但是,如果通过基本函数与潜在过程的线性组合无法很好地近似空间场,则LMC会失败。在本文中,我们通过引入可演化的神经网络来线性化高度复杂和非线性空间场,以便LMC可以轻松地将非线性问题概括为非线性问题,同时保留了放大学性和可伸缩性。几个现实世界的应用程序表明,E-LMC可以有效利用空间相关性,显示出比原始LMC的最大提高约40%,并且表现优于其他最先进的空间场模型。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译