信道估计是数字通信中的一个关键任务,极大地影响了端到端系统性能。在这项工作中,我们使用深扩散模型介绍了一种用于多输入多输出(MIMO)信道估计的新方法。我们的方法使用深神经网络,该虚拟神经网络训练,以估计无线信道的任何点在高维空间中的无线信道的阶梯的梯度,并利用该模型通过后部采样解决信道估计。我们训练来自CDL-D模型的频道实现深度扩散模型,用于两个天线间距,表明,与生成的对抗网络(GaN)和压缩感测相比,​​该方法会导致竞争性和分发性能竞争和分发性能(CS ) 方法。当在训练期间从未见过的CDL-C信道测试或微调,我们的方法与CS方法和仅$ 0.5 $ DB的CS方法和损失相比,我们的方法导致最高$ 3 $ DB的最高元编码性能。理想的渠道知识。为了鼓励开放和可重复的研究,我们的源代码可以在https://github.com/utcsilab/diffusion-channels获得。
translated by 谷歌翻译
Channel estimation is a critical task in multiple-input multiple-output (MIMO) digital communications that substantially effects end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. A model is trained to estimate the gradient of the logarithm of a distribution and is used to iteratively refine estimates given measurements of a signal. We introduce a framework for training score-based generative models for wireless MIMO channels and performing channel estimation based on posterior sampling at test time. We derive theoretical robustness guarantees for channel estimation with posterior sampling in single-input single-output scenarios, and experimentally verify performance in the MIMO setting. Our results in simulated channels show competitive in-distribution performance, and robust out-of-distribution performance, with gains of up to $5$ dB in end-to-end coded communication performance compared to supervised deep learning methods. Simulations on the number of pilots show that high fidelity channel estimation with $25$% pilot density is possible for MIMO channel sizes of up to $64 \times 256$. Complexity analysis reveals that model size can efficiently trade performance for estimation latency, and that the proposed approach is competitive with compressed sensing in terms of floating-point operation (FLOP) count.
translated by 谷歌翻译
最近的作品表明,现代机器学习技术可以为长期存在的联合源通道编码(JSCC)问题提供另一种方法。非常有希望的初始结果,优于使用单独的源代码和通道代码的流行数字方案,已被证明用于使用深神经网络(DNNS)的无线图像和视频传输。但是,此类方案的端到端培训需要可区分的通道输入表示。因此,先前的工作假设可以通过通道传输任何复杂值。这可以防止在硬件或协议只能接收数字星座规定的某些频道输入集的情况下应用这些代码。本文中,我们建议使用有限通道输入字母的端到端优化的JSCC解决方案DeepJSCC-Q。我们表明,DEEPJSCC-Q可以实现与允许任何复杂的有价值通道输入的先前作品相似的性能,尤其是在可用的高调制订单时,并且在调制顺序增加的情况下,性能渐近接近无约束通道输入的情况。重要的是,DEEPJSCC-Q保留了不可预测的渠道条件下图像质量的优雅降级,这是在频道迅速变化的移动系统中部署的理想属性。
translated by 谷歌翻译
最近,使用自动编码器(由使用神经网络建模的编码器,渠道和解码器组成)的通信系统的端到端学习问题最近被证明是一种有希望的方法。实际采用这种学习方法面临的挑战是,在变化的渠道条件(例如无线链接)下,它需要经常对自动编码器进行重新训练,以保持低解码错误率。由于重新培训既耗时又需要大量样本,因此当通道分布迅速变化时,它变得不切实际。我们建议使用不更改编码器和解码器网络的快速和样本(几射击)域的适应方法来解决此问题。不同于常规的训练时间无监督或半监督域的适应性,在这里,我们有一个训练有素的自动编码器,来自源分布,我们希望(在测试时间)使用仅使用一个小标记的数据集和无标记的数据来适应(测试时间)到目标分布。我们的方法着重于基于高斯混合物网络的通道模型,并根据类和组件条件仿射变换制定其适应性。学习的仿射转换用于设计解码器的最佳输入转换以补偿分布变化,并有效地呈现在接近源分布的解码器输入中。在实际MMWAVE FPGA设置以及无线设置共有的许多模拟分布变化上,使用非常少量的目标域样本来证明我们方法在适应时的有效性。
translated by 谷歌翻译
State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location and time sensitive, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. In this paper, we introduce AirNet, a novel training and transmission method that allows efficient wireless delivery of DNNs under stringent transmit power and latency constraints. We first train the DNN with noise injection to counter the wireless channel noise. Then we employ pruning to reduce the network size to the available channel bandwidth, and perform knowledge distillation from a larger model to achieve satisfactory performance, despite pruning. We show that AirNet achieves significantly higher test accuracy compared to digital alternatives under the same bandwidth and power constraints. The accuracy of the network at the receiver also exhibits graceful degradation with channel quality, which reduces the requirement for accurate channel estimation. We further improve the performance of AirNet by pruning the network below the available bandwidth, and using channel expansion to provide better robustness against channel noise. We also benefit from unequal error protection (UEP) by selectively expanding more important layers of the network. Finally, we develop an ensemble training approach, which trains a whole spectrum of DNNs, each of which can be used at different channel condition, resolving the impractical memory requirements.
translated by 谷歌翻译
最近的作品表明,可以通过使用机器学习技术来学习图像的无线传输的任务。已经通过训练了自动化器,非常有前沿图像质量,优于利用源和信道编码分离的流行数字方案,以具有中间的不可培训的沟道层,优于利用源和信道编码分离。然而,这些方法假设可以通过信道传输任何复数,这可以防止硬件或协议只能承认某些信道输入的场景中的算法,例如使用数字星座的使用。这里,我们提出了DeepJSCC-Q,用于无线图像传输的端到端优化的联合源信道编码方案,其能够用固定信道输入字母操作。我们表明DeepJSCC-Q可以对使用连续值通道输入的模型来实现类似的性能。重要的是,在信道条件恶化的情况下,保留在现有工作中观察到的图像质量的正常劣化,使DeepJSCC-Q在实际系统中部署更具吸引力。
translated by 谷歌翻译
Effective and adaptive interference management is required in next generation wireless communication systems. To address this challenge, Rate-Splitting Multiple Access (RSMA), relying on multi-antenna rate-splitting (RS) at the transmitter and successive interference cancellation (SIC) at the receivers, has been intensively studied in recent years, albeit mostly under the assumption of perfect Channel State Information at the Receiver (CSIR) and ideal capacity-achieving modulation and coding schemes. To assess its practical performance, benefits, and limits under more realistic conditions, this work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods, which aims to unite the simple structure of the conventional SIC receiver and the robustness and model agnosticism of deep learning techniques. The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS), and average training overhead. Also, a comparison with the SIC receiver, with perfect and imperfect CSIR, is given. Results reveal that the MBDL receiver outperforms by a significant margin the SIC receiver with imperfect CSIR, due to its ability to generate on demand non-linear symbol detection boundaries in a pure data-driven manner.
translated by 谷歌翻译
在多输入多输出(MIMO)系统中使用深度自动码器(DAE)进行端到端通信,是一种具有重要潜力的新概念。在误码率(BER)方面,已示出DAE-ADED MIMO以占地识别的奇异值分解(SVD)为基础的预编码MIMO。本文提出将信道矩阵的左右奇异矢量嵌入到DAE编码器和解码器中,以进一步提高MIMO空间复用的性能。 SVD嵌入式DAE主要优于BER的理论线性预编码。这是显着的,因为它表明所提出的DAES通过将通信系统视为单个端到端优化块来超出当前系统设计的极限。基于仿真结果,在SNR = 10dB,所提出的SVD嵌入式设计可以实现近10美元,并将BER减少至少10次,而没有SVD,相比增长了18倍的增长率最高18倍具有理论线性预编码。我们将这一点归因于所提出的DAE可以将输入和输出与具有有限字母输入的自适应调制结构匹配。我们还观察到添加到DAE的剩余连接进一步提高了性能。
translated by 谷歌翻译
在多输入的多输出频率划分双工(MIMO-FDD)系统中,用户设备(UE)将下行链路通道状态信息(CSI)发送到基础站以报告链接状态。由于MIMO系统的复杂性,发送此信息产生的高架对系统带宽产生负面影响。尽管在文献中已广泛考虑了这个问题,但先前的工作通常假定理想的反馈渠道。在本文中,我们介绍了PRVNET,这是一种受差异自动编码器(VAE)启发的神经网络体系结构,以压缩CSI矩阵,然后再将其发送回噪声通道条件下的基站。此外,我们提出了一种定制的损失功能,该功能最适合所解决的问题的特殊特征。我们还为学习目标引入了另外的正规化超参数,这对于实现竞争性能至关重要。此外,我们还提供了一种有效的方法,可以使用kl耗电来调整此超参数。实验结果表明,在无噪声反馈通道假设中,提出的模型优于基准模型,包括两个基于深度学习的模型。此外,提议的模型在不同的噪声水平下为加性白色高斯噪声反馈通道实现了出色的性能。
translated by 谷歌翻译
Ultra-reliable short-packet communication is a major challenge in future wireless networks with critical applications. To achieve ultra-reliable communications beyond 99.999%, this paper envisions a new interaction-based communication paradigm that exploits feedback from the receiver. We present AttentionCode, a new class of feedback codes leveraging deep learning (DL) technologies. The underpinnings of AttentionCode are three architectural innovations: AttentionNet, input restructuring, and adaptation to fading channels, accompanied by several training methods, including large-batch training, distributed learning, look-ahead optimizer, training-test signal-to-noise ratio (SNR) mismatch, and curriculum learning. The training methods can potentially be generalized to other wireless communication applications with machine learning. Numerical experiments verify that AttentionCode establishes a new state of the art among all DL-based feedback codes in both additive white Gaussian noise (AWGN) channels and fading channels. In AWGN channels with noiseless feedback, for example, AttentionCode achieves a block error rate (BLER) of $10^{-7}$ when the forward channel SNR is 0 dB for a block size of 50 bits, demonstrating the potential of AttentionCode to provide ultra-reliable short-packet communications.
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
传统上,信号处理,通信和控制一直依赖经典的统计建模技术。这种基于模型的方法利用代表基本物理,先验信息和其他领域知识的数学公式。简单的经典模型有用,但对不准确性敏感,当真实系统显示复杂或动态行为时,可能会导致性能差。另一方面,随着数据集变得丰富,现代深度学习管道的力量增加,纯粹的数据驱动的方法越来越流行。深度神经网络(DNNS)使用通用体系结构,这些架构学会从数据中运行,并表现出出色的性能,尤其是针对受监督的问题。但是,DNN通常需要大量的数据和巨大的计算资源,从而限制了它们对某些信号处理方案的适用性。我们对将原则数学模型与数据驱动系统相结合的混合技术感兴趣,以从两种方法的优势中受益。这种基于模型的深度学习方法通​​过为特定问题设计的数学结构以及从有限的数据中学习来利用这两个部分领域知识。在本文中,我们调查了研究和设计基于模型的深度学习系统的领先方法。我们根据其推理机制将基于混合模型/数据驱动的系统分为类别。我们对以系统的方式将基于模型的算法与深度学习以及具体指南和详细的信号处理示例相结合的领先方法进行了全面综述。我们的目的是促进对未来系统的设计和研究信号处理和机器学习的交集,这些系统结合了两个领域的优势。
translated by 谷歌翻译
最近,基于深层神经网络(DNN)的物理层通信技术引起了极大的兴趣。尽管模拟实验已经验证了它们增强通信系统和出色性能的潜力,但对理论分析的关注很少。具体而言,物理层中的大多数研究都倾向于专注于DNN模型在无线通信问题上的应用,但理论上不了解DNN在通信系统中的工作方式。在本文中,我们旨在定量分析为什么DNN可以在物理层中与传统技术相比,并在计算复杂性方面提高其成本。为了实现这一目标,我们首先分析基于DNN的发射器的编码性能,并将其与传统发射器进行比较。然后,我们理论上分析了基于DNN的估计器的性能,并将其与传统估计器进行比较。第三,我们调查并验证在信息理论概念下基于DNN的通信系统中如何播放信息。我们的分析开发了一种简洁的方式,可以在物理层通信中打开DNN的“黑匣子”,可用于支持基于DNN的智能通信技术的设计,并有助于提供可解释的性能评估。
translated by 谷歌翻译
巨大的多输入多输出(MIMO)通信系统在数据速率和能效方面具有巨大的潜力,尽管信道估计对于大量天线变得具有挑战性。使用物理模型允许通过基于传播物理来注入先验信息来缓解问题。然而,这种模型依赖于简化假设,并且需要精确地了解系统的配置,这在实践中是不现实的。在本文中我们呈现了MPNET,该展开神经网络专为大规模的MIMO信道估计而设计。它以无人监督的方式在线培训。此外,MPNET正在计算上高效,并自动将其深度与信噪比(SNR)相互作用。我们提出的方法通过允许基于传入数据自动校正其信道估计算法来增加物理信道模型的灵活性,而无需单独的离线训练阶段。它应用于现实毫米波通道并显示表现出色,实现频道估计误差几乎与一个完美校准的系统一起获得的频道估计误差。它还允许入射检测和自动校正,使BS弹性能够自动适应其环境的变化。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
近年来,在诸如denoing,压缩感应,介入和超分辨率等反问题中使用深度学习方法的使用取得了重大进展。尽管这种作品主要是由实践算法和实验驱动的,但它也引起了各种有趣的理论问题。在本文中,我们调查了这一作品中一些突出的理论发展,尤其是生成先验,未经训练的神经网络先验和展开算法。除了总结这些主题中的现有结果外,我们还强调了一些持续的挑战和开放问题。
translated by 谷歌翻译
我们研究了数据驱动的深度学习方法的潜力,即从观察它们的混合物中分离两个通信信号。特别是,我们假设一个信号之一的生成过程(称为感兴趣的信号(SOI)),并且对第二个信号的生成过程不了解,称为干扰。单通道源分离问题的这种形式也称为干扰拒绝。我们表明,捕获高分辨率的时间结构(非平稳性),可以准确地同步与SOI和干扰,从而带来了可观的性能增长。有了这个关键的见解,我们提出了一种域信息神经网络(NN)设计,该设计能够改善“现成” NNS和经典检测和干扰拒绝方法,如我们的模拟中所示。我们的发现突出了特定于交流领域知识的关键作用在开发数据驱动的方法方面发挥了作用,这些方法具有前所未有的收益的希望。
translated by 谷歌翻译
给定有限数量的训练数据样本的分类的基本任务被考虑了具有已知参数统计模型的物理系统。基于独立的学习和统计模型的分类器面临使用小型训练集实现分类任务的主要挑战。具体地,单独依赖基于物理的统计模型的分类器通常遭受它们无法适当地调整底层的不可观察的参数,这导致系统行为的不匹配表示。另一方面,基于学习的分类器通常依赖于来自底层物理过程的大量培训数据,这在最实际的情况下可能不可行。本文提出了一种混合分类方法 - 被称为亚牙线的菌丝 - 利用基于物理的统计模型和基于学习的分类器。所提出的解决方案基于猜想,即通过融合它们各自的优势,刺鼠线将减轻与基于学习和统计模型的分类器的各个方法相关的挑战。所提出的混合方法首先使用可用(次优)统计估计程序来估计不可观察的模型参数,随后使用基于物理的统计模型来生成合成数据。然后,培训数据样本与基于学习的分类器中的合成数据结合到基于神经网络的域 - 对抗训练。具体地,为了解决不匹配问题,分类器将从训练数据和合成数据的映射学习到公共特征空间。同时,培训分类器以在该空间内找到判别特征,以满足分类任务。
translated by 谷歌翻译
Link-Adaptation(LA)是无线通信的最重要方面之一,其中发射器使用的调制和编码方案(MCS)适用于通道条件,以满足某些目标误差率。在具有离细胞外干扰的单用户SISO(SU-SISO)系统中,LA是通过计算接收器处计算后平均值 - 交换后噪声比(SINR)进行的。可以在使用线性探测器的多用户MIMO(MU-MIMO)接收器中使用相同的技术。均衡后SINR的另一个重要用途是用于物理层(PHY)抽象,其中几个PHY块(例如通道编码器,检测器和通道解码器)被抽象模型取代,以加快系统级级别的模拟。但是,对于具有非线性接收器的MU-MIMO系统,尚无等效于平衡后的SINR,这使LA和PHY抽象都极具挑战性。这份由两部分组成的论文解决了这个重要问题。在这一部分中,提出了一个称为检测器的称为比特 - 金属解码速率(BMDR)的度量,该指标提出了相当于后平等SINR的建议。由于BMDR没有封闭形式的表达式可以启用其瞬时计算,因此一种机器学习方法可以预测其以及广泛的仿真结果。
translated by 谷歌翻译
我们根据光学通信中的载体回收率的变异推断研究了自适应盲人均衡器的潜力。这些均衡器基于最大似然通道估计的低复杂性近似。我们将变异自动编码器(VAE)均衡器的概念概括为包括概率星座塑形(PCS)的高阶调制格式,无处不在,在光学通信中,对接收器进行过度采样和双极化传输。除了基于卷积神经网络的黑盒均衡器外,我们还提出了基于线性蝴蝶滤波器的基于模型的均衡器,并使用变异推理范式训练过滤器系数。作为副产品,VAE还提供了可靠的通道估计。我们在具有符号间干扰(ISI)的经典添加剂白色高斯噪声(AWGN)通道和色散线性光学双极化通道上分析了VAE的性能和灵活性。我们表明,对于固定的固定通道但也随时间变化的通道,它可以超越最先进的恒定算法(CMA)来扩展盲人自适应均衡器的应用范围。评估伴随着超参数分析。
translated by 谷歌翻译