Point cloud registration is a key problem for computer vision applied to robotics, medical imaging, and other applications. This problem involves finding a rigid transformation from one point cloud into another so that they align. Iterative Closest Point (ICP) and its variants provide simple and easily-implemented iterative methods for this task, but these algorithms can converge to spurious local optima.To address local optima and other difficulties in the ICP pipeline, we propose a learning-based method, titled Deep Closest Point (DCP), inspired by recent techniques in computer vision and natural language processing. Our model consists of three parts: a point cloud embedding network, an attention-based module combined with a pointer generation layer, to approximate combinatorial matching, and a differentiable singular value decomposition (SVD) layer to extract the final rigid transformation. We train our model end-to-end on the ModelNet40 dataset and show in several settings that it performs better than ICP, its variants (e.g., Go-ICP, FGR), and the recently-proposed learning-based method PointNetLK. Beyond providing a state-of-the-art registration technique, we evaluate the suitability of our learned features transferred to unseen objects. We also provide preliminary analysis of our learned model to help understand whether domain-specific and/or global features facilitate rigid registration.
translated by 谷歌翻译
3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: \href{https://github.com/fukexue/RGM}{https://github.com/fukexue/RGM}.
translated by 谷歌翻译
与最小化点对点距离的传统算法设置的注册最小化通常可以更好地估计刚性转换。然而,最近的基于深度学习的方法最大程度地减少了点对点距离。与这些方法相反,本文提出了第一种基于深度学习的方法来点对上注册的方法。该问题的一个具有挑战性的部分是,用于点对点注册的典型解决方案需要迭代的过程来累积通过最小化线性的能量函数获得的小型转换。迭代显着增加了反向传播所需的计算图的大小,并且可以放慢前进和后退网络评估。为了解决此问题,我们将估计的刚体转换视为输入点云的函数,并使用隐式函数定理得出其分析梯度。我们引入的分析梯度独立于如何获得误差最小化函数(即刚性变换),从而使我们能够有效地计算刚性变换及其梯度。我们在几种先前的方法上实现了所提出的点对平面注册模块,这些模块可以最大程度地减少点对点距离,并证明扩展名的表现超过了基本方法,即使具有噪声和低质量的点云的点云,也通过局部点分布估算了差异。
translated by 谷歌翻译
刚性变换相关的点云的注册是计算机视觉中的基本问题之一。然而,仍然缺乏在存在噪声存在下对准稀疏和不同采样的观察的实际情况的解决方案。我们在这种情况下接近注册,融合封闭形式的通用Mani-折叠嵌入(UME)方法和深神经网络。这两者组合成一个统一的框架,名为Deepume,训练的端到端并以无人监督的方式。为了在存在大转换的情况下成功提供全球解决方案,我们采用So(3) - 识别的坐标系来学习点云的联合重采样策略等(3) - variant功能。然后通过用于转换估计的几何UME方法来利用这些特征。使用度量进行优化的Dewume参数,旨在克服在对称形状的注册中出现的歧义问题,当考虑嘈杂的场景时。我们表明,我们的混合方法在各种场景中优于最先进的注册方法,并概括到未操作数据集。我们的代码公开提供。
translated by 谷歌翻译
如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
最近的基于变压器的方法通过利用变压器的优势在秩序 - 不变性和建模依赖性依赖于聚合信息来实现高级云注册的高级性能。然而,它们仍然遭受模糊的特征提取,对噪音和异常值的敏感性。原因是:(1)采用CNNS由于其本地接受领域而无法模拟全球关系,导致易受噪声的提取特征; (2)变压器的浅宽度和位置编码缺乏由于效率低下的信息相互作用导致模糊的特征提取; (3)遗漏几何兼容性导致入世与异常值之间的分类不准确。为了满足以上限制,提出了一种用于点云注册的新型变压器网络,命名为深度交互式变换器(DIT),它包含:(1)点云结构提取器(PSE)来模拟全球关系,并通过变压器检索结构信息编码器; (2)深窄点特征变压器(PFT),以便于与位置编码的两个点云相互作用,使得变压器可以建立综合关联,直接学习点之间的相对位置; (3)基于几何匹配的对应置信置信度评估(GMCCE)方法来测量空间一致性,并通过设计三角形描述符来估计inlier置信度。在清洁,嘈杂,部分重叠点云注册的广泛实验表明我们的方法优于最先进的方法。
translated by 谷歌翻译
高信心重叠的预测和准确的对应关系对于以部分到派对方式对齐成对点云至关重要。但是,重叠区域和非重叠区域之间存在固有的不确定性,这些区域一直被忽略并显着影响注册绩效。除了当前的智慧之外,我们提出了一种新颖的不确定性意识到的重叠预测网络,称为Utopic,以解决模棱两可的重叠预测问题。据我们所知,这是第一个明确引入重叠不确定性以指向云注册的人。此外,我们诱导特征提取器通过完成解码器隐式感知形状知识,并为变压器提供几何关系嵌入,以获得转换 - 不变性的几何形状感知特征表示。凭借更可靠的重叠得分和更精确的密度对应关系的优点,即使对于有限的重叠区域的输入,乌托邦也可以实现稳定而准确的注册结果。关于合成和实际基准的广泛定量和定性实验证明了我们的方法优于最先进的方法。代码可从https://github.com/zhileichen99/utopic获得。
translated by 谷歌翻译
生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
这项工作调查了鲁棒优化运输(OT)的形状匹配。具体而言,我们表明最近的OT溶解器改善了基于优化和深度学习方法的点云登记,以实惠的计算成本提高了准确性。此手稿从现代OT理论的实际概述开始。然后,我们为使用此框架进行形状匹配的主要困难提供解决方案。最后,我们展示了在广泛的具有挑战性任务上的运输增强的注册模型的性能:部分形状的刚性注册;基蒂数据集的场景流程估计;肺血管树的非参数和肺部血管树。我们基于OT的方法在准确性和可扩展性方面实现了基蒂的最先进的结果,并为挑战性的肺登记任务。我们还释放了PVT1010,这是一个新的公共数据集,1,010对肺血管树,具有密集的采样点。此数据集提供了具有高度复杂形状和变形的点云登记算法的具有挑战性用例。我们的工作表明,强大的OT可以为各种注册模型进行快速预订和微调,从而为计算机视觉工具箱提供新的键方法。我们的代码和数据集可在线提供:https://github.com/uncbiag/robot。
translated by 谷歌翻译
本文提出了一种可对应的点云旋转登记的方法。我们学习为每个点云嵌入保留所以(3)-equivariance属性的特征空间中的嵌入,通过最近的Quifariant神经网络的开发启用。所提出的形状登记方法通过用隐含形状模型结合等分性的特征学习来实现三个主要优点。首先,由于网络架构中类似于PointNet的网络体系结构中的置换不变性,因此删除了数据关联的必要性。其次,由于SO(3)的性能,可以使用喇叭的方法以闭合形式来解决特征空间中的注册。第三,由于注册和隐含形状重建的联合培训,注册对点云中的噪声强大。实验结果显示出优异的性能与现有的无对应的深层登记方法相比。
translated by 谷歌翻译
由于稀疏和嘈杂的测量,不完整的观察和大转化,3D对象的点云注册是非常具有挑战性的。在这项工作中,我们提出了匹配共识网络(GMCNet)的图表匹配,该网络估计了ultrange 1偏向部分点云注册(PPR)的姿势不变的对应关系。为了编码强大的点描述符,1)我们首先全面调查各种几何特征的变换 - 鲁棒性和远征性。 2)然后,我们采用新颖的转换 - 强大的点变换器(TPT)模块,以自适应地聚合有关结构关系的本地特征,其利用手工旋转 - 不变($ RI $)功能和噪声弹性空间坐标。 3)基于分层图网络网络和图形建模的协同作用,我们提出了编码由I)从$ RI $特征中汲取的一项机会学习的强大描述符的分层图形建模(HGM)架构;并且ii)通过我们的TPT模块以不同尺度的相邻点关系编码的多个平滑术语。此外,我们用虚拟扫描构建一个具有挑战性的PPR数据集(MVP-RG)。广泛的实验表明,GMCNet优于PPR以前的最先进方法。值得注意的是,GMCNET编码每个点云的点描述符,而不使用CrossContexual信息,或接地真理对应进行培训。我们的代码和数据集将在https://github.com/paul007pl/gmcnet上获得。
translated by 谷歌翻译
点云注册是许多任务的基本步骤。在本文中,我们提出了一个名为detarnet的神经网络,将$ t $和旋转降序,以克服Point云注册的相互干扰导致的性能下降。首先,提出了一种基于暹罗网络的渐进和相干特征漂移(PCFD)模块以对准高维特征空间中的源点和目标点,并准确地从对准过程恢复转换。然后,我们提出了一种共识编码单元(CEU),以构建一组推定的对应关系的更区别特征。之后,采用空间和信道注意力(SCA)块来构建用于寻找良好通信的分类网络。最后,通过奇异值分解(SVD)获得旋转。以这种方式,所提出的网络对翻译和旋转的估计进行了解耦,导致它们两个的更好的性能。实验结果表明,拟议的Detarnet在室内和室外场景中提高了登记性能。我们的代码将在\ url {https://github.com/zhichen902/detarnet}中获得。
translated by 谷歌翻译
部分重叠点云的实时登记具有对自治车辆和多助手SLAM的合作看法的新兴应用。这些应用中点云之间的相对转换高于传统的SLAM和OCOMOTRY应用程序,这挑战了对应的识别和成功的注册。在本文中,我们提出了一种用于部分重叠点云的新颖注册方法,其中使用有效的点亮特征编码器学习对应关系,并使用基于图形的注意网络改进。这种注意网络利用关键点之间的几何关系,以改善点云中的匹配,低重叠。在推断时间下,通过通过样本共识稳健地拟合对应关系来获得相对姿态变换。在基蒂数据集和新的合成数据集上进行评估,包括低重叠点云,位移高达30米。所提出的方法在Kitti DataSet上使用最先进的方法实现了对映射性能,并且优于低重叠点云的现有方法。此外,所提出的方法可以比竞争方法更快地实现更快的推理时间,低至410ms,低至410ms。我们的代码和数据集可在https://github.com/eduardohenriquearnold/fastreg提供。
translated by 谷歌翻译
准确和高效的点云注册是一个挑战,因为噪音和大量积分影响了对应搜索。这一挑战仍然是一个剩余的研究问题,因为大多数现有方法都依赖于对应搜索。为了解决这一挑战,我们通过调查深生成的神经网络来点云注册来提出新的数据驱动登记算法。给定两个点云,动机是直接生成对齐的点云,这在许多应用中非常有用,如3D匹配和搜索。我们设计了一个端到端的生成神经网络,用于对齐点云生成以实现这种动机,包含三种新组件。首先,提出了一种点多感知层(MLP)混频器(PointMixer)网络以便在自点云中有效地维护全局和局部结构信息。其次,提出了一种特征交互模块来融合来自交叉点云的信息。第三,提出了一种并行和差分样本共识方法来基于所生成的登记结果计算输入点云的变换矩阵。所提出的生成神经网络通过维持数据分布和结构相似度,在GAN框架中训练。 ModelNet40和7Scene数据集的实验表明,所提出的算法实现了最先进的准确性和效率。值得注意的是,与基于最先进的对应的算法相比,我们的方法减少了注册错误(CD)的$ 2 \次数为$ 12 \倍运行时间。
translated by 谷歌翻译
基于学习的3D点云注册的任务已经取得了很大的进展,即使在部分到部分匹配方案中,现有方法也在ModelNET40等标准基准上产生未完成的结果。不幸的是,这些方法仍然在实际数据存在下挣扎。在这项工作中,我们确定了这些失败的来源,分析了它们背后的原因,并提出解决它们的解决方案。我们将我们的调查结果总结为一系列准则,并通过将它们应用于不同的基线方法,DCP和IDAM来证明其有效性。简而言之,我们的指导方针改善了它们的培训融合和测试准确性。最终,这转换为最佳实践的3D注册网络(BPNET),构成了一种能够在真实数据中处理先前未经操作的基于学习的方法。尽管仅对合成数据进行培训,但我们的模型将推广到实际数据,而无需任何微调,达到使用商业传感器获得的看不见物体的点云达到高达67%的准确性。
translated by 谷歌翻译
变换同步是从给定的一组相对运动中恢复绝对变换的问题。尽管有其有用,但由于嘈杂和异常相对运动的影响,问题仍然具有挑战性,以及模拟分析并抑制它们高保真的难度。在这项工作中,我们避免了手工强大的损失功能,并建议使用图形神经网络(GNN)来学习转换同步。与使用复杂的多阶段管道的先前作品不同,我们使用迭代方法,其中每个步骤由单个重量共享消息传递层组成,通过预测切线空间中的增量更新,从前一个迭代中改进绝对姿势。为了减少异常值的影响,在聚合之前将加权消息。我们的迭代方法减轻了对明确初始化步骤的需求,并使用身份初始姿势进行良好。虽然我们的方法很简单,但我们表明它通过SO(3)和SE(3)同步的实验来对现有的手工和学习的同步方法进行有利的。
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译