强化学习(RL)已在域中展示有效,在域名可以通过与其操作环境进行积极互动来学习政策。但是,如果我们将RL方案更改为脱机设置,代理商只能通过静态数据集更新其策略,其中脱机强化学习中的一个主要问题出现,即分配转移。我们提出了一种悲观的离线强化学习(PESSORL)算法,以主动引导代理通过操纵价值函数来恢复熟悉的区域。我们专注于由分销外(OOD)状态引起的问题,并且故意惩罚训练数据集中不存在的状态的高值,以便学习的悲观值函数下限界限状态空间内的任何位置。我们在各种基准任务中评估Pessorl算法,在那里我们表明我们的方法通过明确处理OOD状态,与这些方法仅考虑ood行动时,我们的方法通过明确处理OOD状态。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
离线增强学习(RL)定义了从静态记录数据集学习的任务,而无需与环境不断交互。学识渊博的政策与行为政策之间的分配变化使得价值函数必须保持保守,以使分布(OOD)的动作不会被严重高估。但是,现有的方法,对看不见的行为进行惩罚或与行为政策进行正规化,太悲观了,这抑制了价值功能的概括并阻碍了性能的提高。本文探讨了温和但足够的保守主义,可以在线学习,同时不损害概括。我们提出了轻度保守的Q学习(MCQ),其中通过分配了适当的伪Q值来积极训练OOD。从理论上讲,我们表明MCQ诱导了至少与行为策略的行为,并且对OOD行动不会发生错误的高估。 D4RL基准测试的实验结果表明,与先前的工作相比,MCQ取得了出色的性能。此外,MCQ在从离线转移到在线时显示出卓越的概括能力,并明显胜过基准。
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
Off-policy reinforcement learning aims to leverage experience collected from prior policies for sample-efficient learning. However, in practice, commonly used off-policy approximate dynamic programming methods based on Q-learning and actor-critic methods are highly sensitive to the data distribution, and can make only limited progress without collecting additional on-policy data. As a step towards more robust off-policy algorithms, we study the setting where the off-policy experience is fixed and there is no further interaction with the environment. We identify bootstrapping error as a key source of instability in current methods. Bootstrapping error is due to bootstrapping from actions that lie outside of the training data distribution, and it accumulates via the Bellman backup operator. We theoretically analyze bootstrapping error, and demonstrate how carefully constraining action selection in the backup can mitigate it. Based on our analysis, we propose a practical algorithm, bootstrapping error accumulation reduction (BEAR). We demonstrate that BEAR is able to learn robustly from different off-policy distributions, including random and suboptimal demonstrations, on a range of continuous control tasks.
translated by 谷歌翻译
Offline reinforcement learning (RL) promises the ability to learn effective policies solely using existing, static datasets, without any costly online interaction. To do so, offline RL methods must handle distributional shift between the dataset and the learned policy. The most common approach is to learn conservative, or lower-bound, value functions, which underestimate the return of out-of-distribution (OOD) actions. However, such methods exhibit one notable drawback: policies optimized on such value functions can only behave according to a fixed, possibly suboptimal, degree of conservatism. However, this can be alleviated if we instead are able to learn policies for varying degrees of conservatism at training time and devise a method to dynamically choose one of them during evaluation. To do so, in this work, we propose learning value functions that additionally condition on the degree of conservatism, which we dub confidence-conditioned value functions. We derive a new form of a Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability. By conditioning on confidence, our value functions enable adaptive strategies during online evaluation by controlling for confidence level using the history of observations thus far. This approach can be implemented in practice by conditioning the Q-function from existing conservative algorithms on the confidence. We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence. Finally, we empirically show that our algorithm outperforms existing conservative offline RL algorithms on multiple discrete control domains.
translated by 谷歌翻译
离线增强学习吸引了人们对解决传统强化学习的应用挑战的极大兴趣。离线增强学习使用先前收集的数据集来训练代理而无需任何互动。为了解决对OOD的高估(分布式)动作的高估,保守的估计值对所有输入都具有较低的价值。以前的保守估计方法通常很难避免OOD作用对Q值估计的影响。此外,这些算法通常需要失去一些计算效率,以实现保守估计的目的。在本文中,我们提出了一种简单的保守估计方法,即双重保守估计(DCE),该方法使用两种保守估计方法来限制政策。我们的算法引入了V功能,以避免分发作用的错误,同时隐含得出保守的估计。此外,我们的算法使用可控的罚款术语,改变了培训中保守主义的程度。从理论上讲,我们说明了该方法如何影响OOD动作和分布动作的估计。我们的实验分别表明,两种保守的估计方法影响了所有国家行动的估计。 DCE展示了D4RL的最新性能。
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequential decision-making policy from expert demonstrations. However, when the quality of the data is not optimal, the resulting behavioural policy also performs sub-optimally once deployed. Recently, there has been a surge in offline reinforcement learning methods that hold the promise to extract high-quality policies from sub-optimal historical data. A common approach is to perform regularisation during training, encouraging updates during policy evaluation and/or policy improvement to stay close to the underlying data. In this work, we investigate whether an offline approach to improving the quality of the existing data can lead to improved behavioural policies without any changes in the BC algorithm. The proposed data improvement approach - Trajectory Stitching (TS) - generates new trajectories (sequences of states and actions) by `stitching' pairs of states that were disconnected in the original data and generating their connecting new action. By construction, these new transitions are guaranteed to be highly plausible according to probabilistic models of the environment, and to improve a state-value function. We demonstrate that the iterative process of replacing old trajectories with new ones incrementally improves the underlying behavioural policy. Extensive experimental results show that significant performance gains can be achieved using TS over BC policies extracted from the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that state-of-the-art results are obtained by combining TS with two existing offline learning methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint (TD3+BC).
translated by 谷歌翻译
离线增强学习(RL)提供了一个有希望的方向,可以利用大量离线数据来实现复杂的决策任务。由于分配转移问题,当前的离线RL算法通常被设计为在价值估计和行动选择方面是保守的。但是,这种保守主义在现实情况下遇到观察偏差时,例如传感器错误和对抗性攻击时会损害学习政策的鲁棒性。为了权衡鲁棒性和保守主义,我们通过一种新颖的保守平滑技术提出了强大的离线增强学习(RORL)。在RORL中,我们明确地介绍了数据集附近国家的策略和价值函数的正则化,以及对这些OOD状态的其他保守价值估计。从理论上讲,我们表明RORL比线性MDP中的最新理论结果更紧密地构成。我们证明RORL可以在一般离线RL基准上实现最新性能,并且对对抗性观察的扰动非常强大。
translated by 谷歌翻译
离线增强学习(RL)将经典RL算法的范式扩展到纯粹从静态数据集中学习,而无需在学习过程中与基础环境进行交互。离线RL的一个关键挑战是政策培训的不稳定,这是由于离线数据的分布与学习政策的未结束的固定状态分配之间的不匹配引起的。为了避免分配不匹配的有害影响,我们将当前政策的未静置固定分配正规化在政策优化过程中的离线数据。此外,我们训练动力学模型既实施此正规化,又可以更好地估计当前策略的固定分布,从而减少了分布不匹配引起的错误。在各种连续控制的离线RL数据集中,我们的方法表示竞争性能,从而验证了我们的算法。该代码公开可用。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data and proved offline reinforcement learning to be an essential toolkit in learning control policies in a model-free setting. An offline reinforcement learning algorithm applied to a dataset collected by a suboptimal non-learning-based algorithm can result in a policy that outperforms the behavior agent used to collect the data. Such a scenario is frequent in robotics, where existing automation is collecting operational data. Although offline learning techniques can learn from data generated by a sub-optimal behavior agent, there is still an opportunity to improve the sample complexity of existing offline reinforcement learning algorithms by strategically introducing human demonstration data into the training process. To this end, we propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data and guide policy training towards optimal behavior while reducing overall sample complexity. Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent. We augmented an existing offline reinforcement learning algorithm Conservative Q-Learning with our approach and performed experiments on data collected from MuJoCo and OffWorld Gym learning environments.
translated by 谷歌翻译
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
translated by 谷歌翻译
Pessimism is of great importance in offline reinforcement learning (RL). One broad category of offline RL algorithms fulfills pessimism by explicit or implicit behavior regularization. However, most of them only consider policy divergence as behavior regularization, ignoring the effect of how the offline state distribution differs with that of the learning policy, which may lead to under-pessimism for some states and over-pessimism for others. Taking account of this problem, we propose a principled algorithmic framework for offline RL, called \emph{State-Aware Proximal Pessimism} (SA-PP). The key idea of SA-PP is leveraging discounted stationary state distribution ratios between the learning policy and the offline dataset to modulate the degree of behavior regularization in a state-wise manner, so that pessimism can be implemented in a more appropriate way. We first provide theoretical justifications on the superiority of SA-PP over previous algorithms, demonstrating that SA-PP produces a lower suboptimality upper bound in a broad range of settings. Furthermore, we propose a new algorithm named \emph{State-Aware Conservative Q-Learning} (SA-CQL), by building SA-PP upon representative CQL algorithm with the help of DualDICE for estimating discounted stationary state distribution ratios. Extensive experiments on standard offline RL benchmark show that SA-CQL outperforms the popular baselines on a large portion of benchmarks and attains the highest average return.
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
离线强化学习在利用大型预采用的数据集进行政策学习方面表现出了巨大的希望,使代理商可以放弃经常廉价的在线数据收集。但是,迄今为止,离线强化学习的探索相对较小,并且缺乏对剩余挑战所在的何处的了解。在本文中,我们试图建立简单的基线以在视觉域中连续控制。我们表明,对两个基于最先进的在线增强学习算法,Dreamerv2和DRQ-V2进行了简单的修改,足以超越事先工作并建立竞争性的基准。我们在现有的离线数据集中对这些算法进行了严格的评估,以及从视觉观察结果中进行离线强化学习的新测试台,更好地代表现实世界中离线增强学习问题中存在的数据分布,并开放我们的代码和数据以促进此方面的进度重要领域。最后,我们介绍并分析了来自视觉观察的离线RL所独有的几个关键Desiderata,包括视觉分散注意力和动态视觉上可识别的变化。
translated by 谷歌翻译
Learning policies from fixed offline datasets is a key challenge to scale up reinforcement learning (RL) algorithms towards practical applications. This is often because off-policy RL algorithms suffer from distributional shift, due to mismatch between dataset and the target policy, leading to high variance and over-estimation of value functions. In this work, we propose variance regularization for offline RL algorithms, using stationary distribution corrections. We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer. The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms. We show that the regularizer leads to a lower bound to the offline policy optimization objective, which can help avoid over-estimation errors, and explains the benefits of our approach across a range of continuous control domains when compared to existing state-of-the-art algorithms.
translated by 谷歌翻译