人们对从长尾班级分布中学习的具有挑战性的视觉感知任务越来越兴趣。训练数据集中的极端类失衡使模型偏向于识别多数级数据而不是少数级数据。最近,已经提出了两个分支网络的双分支网络(DBN)框架。传统的分支和重新平衡分支用于提高长尾视觉识别的准确性。重新平衡分支使用反向采样器来生成类平衡的训练样本,以减轻由于类不平衡而减轻偏见。尽管该策略在处理偏见方面非常成功,但使用反向采样器进行培训可以降低表示形式的学习绩效。为了减轻这个问题,常规方法使用了精心设计的累积学习策略,在整个培训阶段,重新平衡分支的影响逐渐增加。在这项研究中,我们旨在开发一种简单而有效的方法,以不需要优化的累积学习而在不累积学习的情况下提高DBN的性能。我们设计了一种称为双边混合增强的简单数据增强方法,该方法将统一采样器中的一个样品与反向采样器中的另一个样品结合在一起,以产生训练样本。此外,我们介绍了阶级条件的温度缩放,从而减轻对拟议的DBN结构的多数级别的偏见。我们对广泛使用的长尾视觉识别数据集进行的实验表明,双边混合增加在改善DBN的表示性能方面非常有效,并且所提出的方法可以实现某些类别的先进绩效。
translated by 谷歌翻译
类别不平衡数据的问题在于,由于少数类别的数据缺乏数据,分类器的泛化性能劣化。在本文中,我们提出了一种新的少数民族过度采样方法,通过利用大多数类作为背景图像的丰富背景来增加多元化的少数民族样本。为了使少数民族样本多样化,我们的主要思想是将前景补丁从少数级别粘贴到来自具有富裕环境的多数类的背景图像。我们的方法很简单,可以轻松地与现有的长尾识别方法结合。我们通过广泛的实验和消融研究证明了提出的过采样方法的有效性。如果没有任何架构更改或复杂的算法,我们的方法在各种长尾分类基准上实现了最先进的性能。我们的代码将在链接上公开提供。
translated by 谷歌翻译
现实世界数据通常存在长尾分布。对不平衡数据的培训倾向于呈现神经网络在头部上表现良好,而尾部课程则更加差。尾班的培训实例的严重稀疏性是主要挑战,这导致培训期间的偏见分配估计。丰富的努力已经致力于改善挑战,包括数据重新采样和综合尾班的新培训实例。然而,没有先前的研究已经利用了从头课程转移到尾班的可转让知识,以校准尾舱的分布。在本文中,我们假设可以通过类似的头部级别来丰富尾部类,并提出一种名为标签感知分布校准Ladc的新型分布校准方法。 Ladc从相关的头部课程转移统计数据以推断尾部课程的分布。从校准分布的采样进一步促进重新平衡分类器。图像和文本的实验和文本长尾数据集表明,LADC显着优于现有方法。可视化还显示LADC提供更准确的分布估计。
translated by 谷歌翻译
当训练数据集患有极端阶级失衡时,深度神经网络通常会表现不佳。最近的研究发现,以半监督的方式直接使用分布外数据(即开放式样本)培训将损害概括性能。在这项工作中,我们从理论上表明,从贝叶斯的角度来看,仍然可以利用分发数据来扩大少数群体。基于这种动机,我们提出了一种称为开放采样的新方法,该方法利用开放式嘈杂标签重新平衡培训数据集的班级先验。对于每个开放式实例,标签是​​从我们的预定义分布中取样的,该分布互补,与原始类先验的分布互补。我们从经验上表明,开放采样不仅可以重新平衡阶级先验,还鼓励神经网络学习可分离的表示。广泛的实验表明,我们提出的方法显着优于现有数据重新平衡方法,并可以提高现有最新方法的性能。
translated by 谷歌翻译
深度神经网络通常使用遇到数量不平衡和分类难度不平衡问题的数据集的性能很差。尽管在该领域取得了进展,但现有的两阶段方法中仍然存在数据集偏差或域转移问题。因此,提出了一个分阶段的渐进学习时间表,从而提出了从表示学习到上层分类器培训的平稳转移。这对严重失衡或较小尺度的数据集具有更大的有效性。设计了耦合 - 调节损失损失函数,耦合校正项,局灶性损失和LDAM损失。损失可以更好地处理数量不平衡和异常值,同时调节具有不同分类困难的样本的注意力重点。这些方法在多个基准数据集上取得了令人满意的结果,包括不平衡的CIFAR10,不平衡的CIFAR100,Imagenet-LT和Inaturalist 2018,并且还可以轻松地将其用于其他不平衡分类模型。
translated by 谷歌翻译
视觉识别任务中的长尾类分布对于如何处理头部和尾部类之间的偏置预测,即,模型倾向于将尾部类作为头部类进行分类。虽然现有的研究专注于数据重采采样和损失函数工程,但在本文中,我们采取了不同的视角:分类利润率。我们研究边距和注册之间的关系(分类得分)并经验遵守偏置边缘,并且偏置的Logits是正相关的。我们提出MARC,一个简单但有效的边缘校准函数,用于动态校准偏置边缘的偏置利润。我们通过对普通的长尾基准测试进行了广泛的实验,包括CIFAR-LT,Imagenet-LT,LT,以及不适物 - LT的广泛实验。实验结果表明,我们的MARC在这些基准上实现了有利的结果。此外,Marc只需三行代码即可实现。我们希望这种简单的方法能够激励人们重新思考偏置的边距和偏见的长尾视觉识别标识。
translated by 谷歌翻译
许多现实世界的识别问题都有不平衡或长尾标签的分布。这些分布使表示形式学习更具挑战性,因为对尾巴类别的概括有限。如果测试分布与训练分布有所不同,例如统一与长尾,需要解决分配转移的问题。为此,最近的作品通过贝叶斯定理的启发,使用边缘修改扩展了SoftMax跨凝结。在本文中,我们通过专家的平衡产品(Balpoe)概括了几种方法,该方法结合了一个具有不同测试时间目标分布的模型家庭,以解决数据中的不平衡。拟议的专家在一个阶段进行培训,无论是共同还是独立的,并无缝融合到Balpoe中。我们表明,Balpoe是Fisher的一致性,可以最大程度地减少均衡误差并执行广泛的实验以验证我们的方法的有效性。最后,我们研究了在这种情况下混合的效果,发现正则化是学习校准专家的关键要素。我们的实验表明,正则化的BALPOE在测试准确性和校准指标上的表现非常出色,从而导致CIFAR-100-LT,Imagenet-LT和Inaturalist-2018数据集的最新结果。该代码将在纸质接受后公开提供。
translated by 谷歌翻译
尽管对视觉识别任务进行了显着进展,但是当培训数据稀缺或高度不平衡时,深神经网络仍然易于普遍,使他们非常容易受到现实世界的例子。在本文中,我们提出了一种令人惊讶的简单且高效的方法来缓解此限制:使用纯噪声图像作为额外的训练数据。与常见使用添加剂噪声或对抗数据的噪声不同,我们通过直接训练纯无随机噪声图像提出了完全不同的视角。我们提出了一种新的分发感知路由批量归一化层(DAR-BN),除了同一网络内的自然图像之外,还可以在纯噪声图像上训练。这鼓励泛化和抑制过度装备。我们所提出的方法显着提高了不平衡的分类性能,从而获得了最先进的导致大量的长尾图像分类数据集(Cifar-10-LT,CiFar-100-LT,想象齿 - LT,和celeba-5)。此外,我们的方法非常简单且易于使用作为一般的新增强工具(在现有增强的顶部),并且可以在任何训练方案中结合。它不需要任何专门的数据生成或培训程序,从而保持培训快速高效
translated by 谷歌翻译
少数族裔类的数据增强是长尾识别的有效策略,因此开发了大量方法。尽管这些方法都确保了样本数量的平衡,但是增强样品的质量并不总是令人满意的,识别且容易出现过度拟合,缺乏多样性,语义漂移等问题。对于这些问题,我们建议班级感知的大学启发了重新平衡学习(CAUIRR),以进行长尾识别,这使Universum具有班级感知的能力,可以从样本数量和质量中重新平衡个人少数族裔。特别是,我们从理论上证明,凯尔学到的分类器与从贝叶斯的角度从平衡状态下学到的那些人一致。此外,我们进一步开发了一种高阶混合方法,该方法可以自动生成类感知的Universum(CAU)数据,而无需诉诸任何外部数据。与传统的大学不同,此类产生的全球还考虑了域的相似性,阶级可分离性和样本多样性。基准数据集的广泛实验证明了我们方法的令人惊讶的优势,尤其是与最先进的方法相比,少数族裔类别的TOP1准确性提高了1.9%6%。
translated by 谷歌翻译
Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distribution (i.e., a few classes occupy most of the data, while most classes have rarely few samples). In the literature, class re-balancing strategies (e.g., re-weighting and re-sampling) are the prominent and effective methods proposed to alleviate the extreme imbalance for dealing with long-tailed problems. In this paper, we firstly discover that these rebalancing methods achieving satisfactory recognition accuracy owe to that they could significantly promote the classifier learning of deep networks. However, at the same time, they will unexpectedly damage the representative ability of the learned deep features to some extent. Therefore, we propose a unified Bilateral-Branch Network (BBN) to take care of both representation learning and classifier learning simultaneously, where each branch does perform its own duty separately. In particular, our BBN model is further equipped with a novel cumulative learning strategy, which is designed to first learn the universal patterns and then pay attention to the tail data gradually. Extensive experiments on four benchmark datasets, including the large-scale iNaturalist ones, justify that the proposed BBN can significantly outperform state-of-the-art methods. Furthermore, validation experiments can demonstrate both our preliminary discovery and effectiveness of tailored designs in BBN for long-tailed problems. Our method won the first place in the iNaturalist 2019 large scale species classification competition, and our code is open-source and available at https://github.com/Megvii-Nanjing/BBN . * Q. Cui and Z.-M. Chen's contribution was made when they were interns in Megvii Research Nanjing, Megvii Technology, China. X.
translated by 谷歌翻译
Deep learning algorithms can fare poorly when the training dataset suffers from heavy class-imbalance but the testing criterion requires good generalization on less frequent classes. We design two novel methods to improve performance in such scenarios. First, we propose a theoretically-principled label-distribution-aware margin (LDAM) loss motivated by minimizing a margin-based generalization bound. This loss replaces the standard cross-entropy objective during training and can be applied with prior strategies for training with class-imbalance such as re-weighting or re-sampling. Second, we propose a simple, yet effective, training schedule that defers re-weighting until after the initial stage, allowing the model to learn an initial representation while avoiding some of the complications associated with re-weighting or re-sampling. We test our methods on several benchmark vision tasks including the real-world imbalanced dataset iNaturalist 2018. Our experiments show that either of these methods alone can already improve over existing techniques and their combination achieves even better performance gains 1 .
translated by 谷歌翻译
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head-to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
translated by 谷歌翻译
视觉世界自然地在目标或场景实例的数量中表现出不平衡,导致\ EMPH {长​​尾分布}。这种不平衡对基于深度学习的分类模式构成了重大挑战。尾课的过采样实例试图解决这种不平衡。然而,有限的视觉多样性导致具有差的呈现能力差的网络。一个简单的计数器到此是解耦表示和分类器网络,并使用过采样仅用于培训分类器。在本文中,而不是反复重新采样相同的图像(以及由此特征),我们探索通过估计尾类分布来生成有意义特征的方向。灵感来自于近期工作的思想,我们创建校准的分布,以对随后用于训练分类器的其他功能。通过在CiFar-100-LT(长尾)数据集上的几个实验,具有不同的不平衡因子和迷你想象 - LT(长尾),我们展示了我们的方法的功效并建立了新的状态 - 艺术。我们还使用T-SNE可视化对生成功能进行了定性分析,并分析了用于校准尾级分布的最近邻居。我们的代码可在https://github.com/rahulvigneswaran/tailcalibx获得。
translated by 谷歌翻译
长尾数据集的泛化差距主要是由于大多数类别仅占占用几个训练样本。解耦培训通过分别培训骨干和分类器来实现更好的性能。导致端到端模型培训的较差的性能(例如,基于Logits利润率的方法)?在这项工作中,我们确定影响分类器的学习的关键因素:在输入分类器之前,具有低熵的通道相关功能。从信息理论的角度来看,我们分析了为什么交叉熵损失倾向于在不平衡数据上产生高度相关的特征。此外,我们理论上的分析和证明对分类器权重的梯度,Hessian的条件数量的影响,以及基于利润率的方法的影响。因此,我们首先建议使用频道美白与去相关(“散点”)分类器的输入用于解耦的权重更新和重塑偏移决策边界,这使得令人满意的结果与基于Logits裕度的方法相结合。但是,当小类课程的数量大,批量不平衡和更多的参与训练导致主要类的过度拟合。我们还提出了两种新颖的模块,基于块的相对平衡的批量采样器(B3RS)和批量嵌入式培训(BET)来解决上述问题,这使得端到端的训练能够实现比解耦训练更好的性能。在长尾分类基准测试,CIFAR-LT和Imagenet-LT上的实验结果证明了我们方法的有效性。
translated by 谷歌翻译
深度神经网络的成功在很大程度上取决于大量高质量注释的数据的可用性,但是这些数据很难或昂贵。由此产生的标签可能是类别不平衡,嘈杂或人类偏见。从不完美注释的数据集中学习无偏分类模型是一项挑战,我们通常会遭受过度拟合或不足的折磨。在这项工作中,我们彻底研究了流行的软马克斯损失和基于保证金的损失,并提供了一种可行的方法来加强通过最大化最小样本余量来限制的概括误差。我们为此目的进一步得出了最佳条件,该条件指示了类原型应锚定的方式。通过理论分析的激励,我们提出了一种简单但有效的方法,即原型锚定学习(PAL),可以轻松地将其纳入各种基于学习的分类方案中以处理不完美的注释。我们通过对合成和现实世界数据集进行广泛的实验来验证PAL对班级不平衡学习和降低噪声学习的有效性。
translated by 谷歌翻译
现实世界数据普遍面对严重的类别 - 不平衡问题,并且展示了长尾分布,即,大多数标签与有限的情况有关。由此类数据集监督的NA \“IVE模型更愿意占主导地位标签,遇到严重的普遍化挑战并变得不佳。我们从先前的角度提出了两种新的方法,以减轻这种困境。首先,我们推导了一个以平衡为导向的数据增强命名均匀的混合物(Unimix)促进长尾情景中的混合,采用先进的混合因子和采样器,支持少数民族。第二,受贝叶斯理论的动机,我们弄清了贝叶斯偏见(北美),是由此引起的固有偏见先前的不一致,并将其补偿为对标准交叉熵损失的修改。我们进一步证明了所提出的方法理论上和经验地确保分类校准。广泛的实验验证我们的策略是否有助于更好校准的模型,以及他们的策略组合在CIFAR-LT,ImageNet-LT和Inattations 2018上实现最先进的性能。
translated by 谷歌翻译
In this paper, we present a simple yet effective method (ABSGD) for addressing the data imbalance issue in deep learning. Our method is a simple modification to momentum SGD where we leverage an attentional mechanism to assign an individual importance weight to each gradient in the mini-batch. Unlike many existing heuristic-driven methods for tackling data imbalance, our method is grounded in {\it theoretically justified distributionally robust optimization (DRO)}, which is guaranteed to converge to a stationary point of an information-regularized DRO problem. The individual-level weight of a sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of information-regularized DRO. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. To balance between the learning of feature extraction layers and the learning of the classifier layer, we employ a two-stage method that uses SGD for pretraining followed by ABSGD for learning a robust classifier and finetuning lower layers. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
与其他类别(称为少数族裔或尾巴类)相比,很少的类或类别(称为多数或头等类别的类别)具有更高的数据样本数量,在现实世界中,长尾数据集经常遇到。在此类数据集上培训深层神经网络会给质量级别带来偏见。到目前为止,研究人员提出了多种加权损失和数据重新采样技术,以减少偏见。但是,大多数此类技术都认为,尾巴类始终是最难学习的类,因此需要更多的重量或注意力。在这里,我们认为该假设可能并不总是成立的。因此,我们提出了一种新颖的方法,可以在模型的训练阶段动态测量每个类别的瞬时难度。此外,我们使用每个班级的难度度量来设计一种新型的加权损失技术,称为“基于阶级难度的加权(CDB-W)损失”和一种新型的数据采样技术,称为“基于类别难度的采样)(CDB-S )'。为了验证CDB方法的广泛可用性,我们对多个任务进行了广泛的实验,例如图像分类,对象检测,实例分割和视频操作分类。结果验证了CDB-W损失和CDB-S可以在许多类似于现实世界中用例的类别不平衡数据集(例如Imagenet-LT,LVIS和EGTEA)上实现最先进的结果。
translated by 谷歌翻译
已知经过类不平衡数据培训的分类器在“次要”类的测试数据上表现不佳,我们的培训数据不足。在本文中,我们调查在这种情况下学习Convnet分类器。我们发现,Convnet显着夸大了次要类别,这与通常拟合的次要类别的传统机器学习算法完全相反。我们进行了一系列分析,并发现了特征偏差现象 - 学识渊博的Convnet在次要类别的训练和测试数据之间产生了偏差的特征 - 这解释了过度拟合的情况。为了补偿特征偏差的影响,将测试数据推向低决策价值区域,我们建议将依赖类的温度(CDT)纳入训练convnet。 CDT在训练阶段模拟特征偏差,迫使Convnet扩大次级数据的决策值,从而可以在测试阶段克服实际特征偏差。我们在基准数据集上验证我们的方法并实现有希望的性能。我们希望我们的见解能够激发解决阶级失去平衡深度学习的新思维方式。
translated by 谷歌翻译
深度神经网络在严重的类不平衡数据集上的表现不佳。鉴于对比度学习的有希望的表现,我们提出了重新平衡的暹罗对比度采矿(RESCOM)来应对不平衡的识别。基于数学分析和仿真结果,我们声称监督的对比学习在原始批次和暹罗批次水平上都遭受双重失衡问题,这比长尾分类学习更为严重。在本文中,在原始批处理水平上,我们引入了级别平衡的监督对比损失,以分配不同类别的自适应权重。在暹罗批次级别,我们提出了一个级别平衡的队列,该队列维持所有类的键相同。此外,我们注意到,相对于对比度逻辑的不平衡对比损失梯度可以将其分解为阳性和负面因素,易于阳性和易于负面因素将使对比度梯度消失。我们建议有监督的正面和负面对挖掘,以获取信息对的对比度计算并改善表示形式学习。最后,为了大致最大程度地提高两种观点之间的相互信息,我们提出了暹罗平衡的软性软件,并与一阶段训练的对比损失结合。广泛的实验表明,在多个长尾识别基准上,RESCON优于先前的方法。我们的代码和模型可公开可用:https://github.com/dvlab-research/rescom。
translated by 谷歌翻译