标准卷积神经网络(CNN)设计很少专注于明确捕获各种功能以增强网络性能的重要性。相反,大多数现有方法遵循增加或调整网络深度和宽度的间接方法,这在许多情况下显着提高了计算成本。受生物视觉系统的启发,我们提出了一种多样化和自适应的卷积网络(DA $ ^ {2} $ - net),它使任何前锋CNN能够明确地捕获不同的功能,并自适应地选择并强调最具信息性的功能有效地提高网络的性能。 DA $ ^ {2} $ - NET会引入可忽略不计的计算开销,它旨在与任何CNN架构轻松集成。我们广泛地评估了基准数据集的DA $ ^ {2} $ - 网上,包括CNN架构的CNN100,SVHN和Imagenet,包括CNN100。实验结果显示DA $ ^ {2} $ - NET提供了具有非常最小的计算开销的显着性能改进。
translated by 谷歌翻译
现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
We propose Convolutional Block Attention Module (CBAM), a simple yet effective attention module for feed-forward convolutional neural networks. Given an intermediate feature map, our module sequentially infers attention maps along two separate dimensions, channel and spatial, then the attention maps are multiplied to the input feature map for adaptive feature refinement. Because CBAM is a lightweight and general module, it can be integrated into any CNN architectures seamlessly with negligible overheads and is end-to-end trainable along with base CNNs. We validate our CBAM through extensive experiments on ImageNet-1K, MS COCO detection, and VOC 2007 detection datasets. Our experiments show consistent improvements in classification and detection performances with various models, demonstrating the wide applicability of CBAM. The code and models will be publicly available.
translated by 谷歌翻译
In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.
translated by 谷歌翻译
已证明卷积神经网络中的渠道注意机制在各种计算机视觉任务中有效。但是,性能改进具有额外的模型复杂性和计算成本。在本文中,我们提出了一种被称为信道分流块的轻量级和有效的注意模块,以通过在全球层面建立信道关系来增强全局背景。与其他通道注意机制不同,所提出的模块通过在考虑信道激活时更加关注空间可区分的渠道,专注于最辨别的特征。与其他介绍模块不同的其他中间层之间的其他关注模型不同,所提出的模块嵌入在骨干网络的末尾,使其易于实现。在CiFar-10,SVHN和微型想象中心数据集上进行了广泛的实验表明,所提出的模块平均提高了基线网络的性能3%的余量。
translated by 谷歌翻译
Convolutional neural networks are built upon the convolution operation, which extracts informative features by fusing spatial and channel-wise information together within local receptive fields. In order to boost the representational power of a network, several recent approaches have shown the benefit of enhancing spatial encoding. In this work, we focus on the channel relationship and propose a novel architectural unit, which we term the "Squeezeand-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We demonstrate that by stacking these blocks together, we can construct SENet architectures that generalise extremely well across challenging datasets. Crucially, we find that SE blocks produce significant performance improvements for existing state-ofthe-art deep architectures at minimal additional computational cost. SENets formed the foundation of our ILSVRC 2017 classification submission which won first place and significantly reduced the top-5 error to 2.251%, achieving a ∼25% relative improvement over the winning entry of 2016.
translated by 谷歌翻译
Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layerwise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
Semiconductor manufacturing is on the cusp of a revolution: the Internet of Things (IoT). With IoT we can connect all the equipment and feed information back to the factory so that quality issues can be detected. In this situation, more and more edge devices are used in wafer inspection equipment. This edge device must have the ability to quickly detect defects. Therefore, how to develop a high-efficiency architecture for automatic defect classification to be suitable for edge devices is the primary task. In this paper, we present a novel architecture that can perform defect classification in a more efficient way. The first function is self-proliferation, using a series of linear transformations to generate more feature maps at a cheaper cost. The second function is self-attention, capturing the long-range dependencies of feature map by the channel-wise and spatial-wise attention mechanism. We named this method as self-proliferation-and-attention neural network. This method has been successfully applied to various defect pattern classification tasks. Compared with other latest methods, SP&A-Net has higher accuracy and lower computation cost in many defect inspection tasks.
translated by 谷歌翻译
卷积神经网络(CNN)不仅被广泛普及,而且在包括图像分类,恢复和生成在内的许多应用中都取得了明显的结果。尽管卷积的重量共享特性使它们在各种任务中被广泛采用,但其内容不足的特征也可以视为主要缺点。为了解决这个问题,在本文中,我们提出了一个新型操作,称为Pixel自适应核(PAKA)。 Paka通过从可学习的功能中乘以空间变化的注意力来提供对滤波器重量的方向性。所提出的方法会沿通道和空间方向分别渗入像素自适应的注意图,以使用较少的参数来解决分解模型。我们的方法可以以端到端的方式训练,并且适用于任何基于CNN的模型。此外,我们建议使用PAKA改进的信息聚合模块,称为层次PAKA模块(HPM)。与常规信息聚合模块相比,我们通过在语义细分方面提出最先进的性能来证明HPM的优势。我们通过其他消融研究来验证提出的方法,并可视化PAKA的效果,从而为卷积的权重提供了方向性。我们还通过将其应用于多模式任务,尤其是颜色引导的深度图超分辨率来显示该方法的普遍性。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity.To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local crosschannel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution. Furthermore, we develop a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction. The proposed ECA module is efficient yet effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFLOPs vs. 3.86 GFLOPs, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.
translated by 谷歌翻译
被广泛采用的缩减采样是为了在视觉识别的准确性和延迟之间取得良好的权衡。不幸的是,没有学习常用的合并层,因此无法保留重要信息。作为另一个降低方法,自适应采样权重和与任务相关的过程区域,因此能够更好地保留有用的信息。但是,自适应采样的使用仅限于某些层。在本文中,我们表明,在深神经网络的构件中使用自适应采样可以提高其效率。特别是,我们提出了SSBNET,该SSBNET是通过将采样层反复插入Resnet等现有网络构建的。实验结果表明,所提出的SSBNET可以在ImageNet和可可数据集上实现竞争性图像分类和对象检测性能。例如,SSB-Resnet-RS-200在Imagenet数据集上的精度达到82.6%,比基线RESNET-RS-152高0.6%,具有相似的复杂性。可视化显示了SSBNET在允许不同层专注于不同位置的优势,而消融研究进一步验证了自适应采样比均匀方法的优势。
translated by 谷歌翻译
人类自然有效地在复杂的场景中找到突出区域。通过这种观察的动机,引入了计算机视觉中的注意力机制,目的是模仿人类视觉系统的这一方面。这种注意机制可以基于输入图像的特征被视为动态权重调整过程。注意机制在许多视觉任务中取得了巨大的成功,包括图像分类,对象检测,语义分割,视频理解,图像生成,3D视觉,多模态任务和自我监督的学习。在本调查中,我们对计算机愿景中的各种关注机制进行了全面的审查,并根据渠道注意,空间关注,暂时关注和分支注意力进行分类。相关的存储库https://github.com/menghaoguo/awesome-vision-tions致力于收集相关的工作。我们还建议了未来的注意机制研究方向。
translated by 谷歌翻译
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections-one between each layer and its subsequent layer-our network has L(L+1) 2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.
translated by 谷歌翻译
在每个卷积层中学习一个静态卷积内核是现代卷积神经网络(CNN)的常见训练范式。取而代之的是,动态卷积的最新研究表明,学习$ n $卷积核与输入依赖性注意的线性组合可以显着提高轻重量CNN的准确性,同时保持有效的推断。但是,我们观察到现有的作品endow卷积内核具有通过一个维度(关于卷积内核编号)的动态属性(关于内核空间的卷积内核编号),但其他三个维度(关于空间大小,输入通道号和输出通道编号和输出通道号,每个卷积内核)被忽略。受到这一点的启发,我们提出了Omni维动态卷积(ODCONV),这是一种更普遍而优雅的动态卷积设计,以推进这一研究。 ODCONV利用了一种新型的多维注意机制,采用平行策略来学习沿着任何卷积层的内核空间的所有四个维度学习卷积内核的互补关注。作为定期卷积的倒数替换,可以将ODCONV插入许多CNN架构中。 ImageNet和MS-Coco数据集的广泛实验表明,ODCONV为包括轻量重量和大型的各种盛行的CNN主链带来了可靠的准确性提升,例如3.77%〜5.71%| 1.86%〜3.72%〜3.72%的绝对1个绝对1改进至ImabivLenetV2 | ImageNet数据集上的重新连接家族。有趣的是,由于其功能学习能力的提高,即使具有一个单个内核的ODCONV也可以与具有多个内核的现有动态卷积对应物竞争或超越现有的动态卷积对应物,从而大大降低了额外的参数。此外,ODCONV也优于其他注意模块,用于调节输出特征或卷积重量。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
在本文中,我们基于任何卷积神经网络中中间注意图的弱监督生成机制,并更加直接地披露了注意模块的有效性,以充分利用其潜力。鉴于现有的神经网络配备了任意注意模块,我们介绍了一个元评论家网络,以评估主网络中注意力图的质量。由于我们设计的奖励的离散性,提出的学习方法是在强化学习环境中安排的,在此设置中,注意力参与者和经常性的批评家交替优化,以提供临时注意力表示的即时批评和修订,因此,由于深度强化的注意力学习而引起了人们的关注。 (Dreal)。它可以普遍应用于具有不同类型的注意模块的网络体系结构,并通过最大程度地提高每个单独注意模块产生的最终识别性能的相对增益来促进其表现能力,如类别和实例识别基准的广泛实验所证明的那样。
translated by 谷歌翻译
近年来,卷积神经网络(CNN)在合成孔径雷达(SAR)目标识别方面表现出巨大的潜力。 SAR图像具有强烈的粒度感,并且具有不同的纹理特征,例如斑点噪声,目标优势散射器和目标轮廓,这些轮廓很少在传统的CNN模型中被考虑。本文提出了两个残留块,即具有多尺度接收场(RFS)的EMC2A块,基于多型结构,然后设计了有效的同位素体系结构深CNN(DCNN),EMC2A-net。 EMC2A阻止使用不同的扩张速率利用平行的扩张卷积,这可以有效地捕获多尺度上下文特征而不会显着增加计算负担。为了进一步提高多尺度功能融合的效率,本文提出了多尺度特征跨通道注意模块,即EMC2A模块,采用了局部的多尺度特征交互策略,而无需降低维度。该策略通过有效的一维(1D) - 圆形卷积和Sigmoid函数适应每个通道的权重,以指导全球通道明智的关注。 MSTAR数据集上的比较结果表明,EMC2A-NET优于相同类型的现有模型,并且具有相对轻巧的网络结构。消融实验结果表明,仅使用一些参数和适当的跨渠道相互作用,EMC2A模块可显着提高模型的性能。
translated by 谷歌翻译
遥感图像中的实例分段的任务,旨在在实例级别执行对象的每像素标记,对于各种民用应用非常重要。尽管以前的成功,但大多数现有的实例分割方法设计用于自然图像时,可以在直接应用于顶视图遥感图像时遇到清晰的性能下降。通过仔细分析,我们观察到由于严重的规模变化,低对比度和聚类分布,挑战主要来自歧视性对象特征。为了解决这些问题,提出了一种新颖的上下文聚合网络(CATNET)来改善特征提取过程。所提出的模型利用了三个轻量级的即插即用模块,即密度特征金字塔网络(Densfpn),空间上下文金字塔(SCP)和兴趣提取器(Hroie)的分层区域,以聚合在功能,空间和的全局视觉上下文实例域分别。 DenseFPN是一种多尺度特征传播模块,通过采用级别的残差连接,交叉级密度连接和具有重新加权策略来建立更灵活的信息流。利用注意力机制,SCP进一步通过将全局空间上下文聚合到当地区域来增强特征。对于每个实例,Hroie自适应地为不同的下游任务生成ROI功能。我们对挑战ISAID,DIOR,NWPU VHR-10和HRSID数据集进行了广泛的评估。评估结果表明,所提出的方法优于具有类似的计算成本的最先进。代码可在https://github.com/yeliudev/catnet上获得。
translated by 谷歌翻译