研究表明,进化策略(ES)是具有深层神经网络的强化学习(RL)的有前途的方法。但是,高样本复杂性的问题仍然存在于ES对深度RL的应用中。本文是第一个通过新颖的神经进化多任务处理(NUEMT)算法解决当今方法的缺点,该算法旨在将信息从一组(短情节长度)转移到目标(全长)的RL任务。从目标中提取的辅助任务允许代理更新并快速评估较短时间范围的策略。然后转移进化的技能,以指导更长,更艰巨的任务实现最佳政策。我们证明了NUEMT算法达到了数据叶进化RL,从而减少了昂贵的代理环境相互作用数据要求。在这种情况下,我们的主要算法贡献是首次基于统计重要性抽样技术引入多任务技能转移机制。此外,利用自适应资源分配策略将计算资源分配给基于其收集的实用性的辅助任务。关于OpenAI体育馆的一系列连续控制任务的实验证实,与最近的ES基线相比,我们提出的算法有效。
translated by 谷歌翻译
最近基于进化的零级优化方法和基于策略梯度的一阶方法是解决加强学习(RL)问题的两个有希望的替代方案。前者的方法与任意政策一起工作,依赖状态依赖和时间扩展的探索,具有健壮性的属性,但遭受了较高的样本复杂性,而后者的方法更有效,但仅限于可区分的政策,并且学习的政策是不太强大。为了解决这些问题,我们提出了一种新颖的零级演员 - 批评算法(ZOAC),该算法将这两种方法统一为派对演员 - 批判性结构,以保留两者的优势。 ZOAC在参数空间,一阶策略评估(PEV)和零订单策略改进(PIM)的参数空间中进行了推出集合,每次迭代中都会进行推出。我们使用不同类型的策略在广泛的挑战连续控制基准上进行广泛评估我们的方法,其中ZOAC优于零阶和一阶基线算法。
translated by 谷歌翻译
进化策略(ES)是一种基于自然进化概念的强大黑盒优化技术。在其每个迭代中,一个关键步骤都需要根据一些健身分数进行排名候选解决方案。对于增强学习的ES方法(RL),此排名步骤需要评估多个策略。目前是通过政策方法完成的:通过使用该策略与环境进行多次交互来估算每个政策的分数。这导致了很多浪费的互动,因为一旦排名完成,与排名最高的策略相关的数据仅用于后续学习。为了提高样品效率,我们基于适应性函数的局部近似,提出了一种新型的分支替代方案。我们在称为增强随机搜索(ARS)的最先进的ES方法的背景下演示了我们的想法。 Mujoco任务中的仿真表明,与原始ARS相比,我们的非政策变体具有相似的运行时间,即可达到奖励阈值,但仅需要70%左右的数据。它还胜过最近的信任区域。我们认为我们的想法也应该扩展到其他ES方法。
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
最近已结合了进化算法(EAS)和深度加强学习(DRL)以集成两个解决方案的优势以获得更好的政策学习。然而,在现有的混合方法中,EA用于直接培训策略网络,这将导致对政策绩效的样本效率和不可预测的影响。为了更好地整合这两种方法并避免引入EA引起的缺点,我们致力于设计更有效和合理的结合EA和DRL的方法。在本文中,我们提出了进化行动选择 - 双胞胎延迟深度确定性政策梯度(EAS-TD3),是EA和DRL的新组合。在EAS中,我们专注于优化策略网络选择的动作,并尝试通过进化算法来指导策略学习的高质量行动。我们对挑战的连续控制任务进行了几个实验。结果表明,EAS-TD3在其他最先进的方法中显示出优异的性能。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
在人类中,感知意识促进了来自感官输入的快速识别和提取信息。这种意识在很大程度上取决于人类代理人如何与环境相互作用。在这项工作中,我们提出了主动神经生成编码,用于学习动作驱动的生成模型的计算框架,而不会在动态环境中反正出错误(Backprop)。具体而言,我们开发了一种智能代理,即使具有稀疏奖励,也可以从规划的认知理论中汲取灵感。我们展示了我们框架与深度Q学习竞争力的几个简单的控制问题。我们的代理的强劲表现提供了有希望的证据,即神经推断和学习的无背方法可以推动目标定向行为。
translated by 谷歌翻译
为设计控制器选择适当的参数集对于最终性能至关重要,但通常需要一个乏味而仔细的调整过程,这意味着强烈需要自动调整方法。但是,在现有方法中,无衍生物的可扩展性或效率低下,而基于梯度的方法可能由于可能是非差异的控制器结构而无法使用。为了解决问题,我们使用新颖的无衍生化强化学习(RL)框架来解决控制器调整问题,该框架在经验收集过程中在参数空间中执行时间段的扰动,并将无衍生策略更新集成到高级参与者 - 批判性RL中实现高多功能性和效率的体系结构。为了证明该框架的功效,我们在自动驾驶的两个具体示例上进行数值实验,即使用PID控制器和MPC控制器进行轨迹跟踪的自适应巡航控制。实验结果表明,所提出的方法的表现优于流行的基线,并突出了其强大的控制器调整潜力。
translated by 谷歌翻译
演员 - 评论家(AC)算法以求解钢筋学习问题而闻名,但它们也遭受了低采样效率。基于AC的策略优化过程是迭代的,并且需要经常访问代理环境系统来通过推出策略,收集奖励和状态(即样本)来评估和更新策略,并从中学习。它最终需要大量的样本来学习最佳政策。为了提高采样效率,我们提出了一种策略来优化培训数据集,该数据集含有从AC过程中收集的显着较少的样本。数据集优化由仅限最佳剧集操作,策略参数 - 健身模型和遗传算法模块。与控制自主动态系统的许多当代AC算法相比,由优化的训练数据集训练的最佳策略网络表现出优越的性能。标准基准测试的评估表明,该方法提高了采样效率,可确保更快地收敛到Optima,并且比其对应物更具数据效率。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
Machine learning frameworks such as Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control. This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques such as Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we review the general framework of the model-free control problem, bringing together all methods as black-box optimization problems. Then, we test the control algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical system featuring frequency cross-talk, (2) the wave cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to illustrate their differences in exploration versus exploitation and their balance between `model capacity' in the control law definition versus `required complexity'. We believe that such a comparison paves the way toward the hybridization of the various methods, and we offer some perspective on their future development in the literature on flow control problems.
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
最近几十年来,已经采用了用于解决各种多主体优化问题(MOPS)的多主体进化算法(MOEAS)的显着进步。但是,这些逐渐改善的MOEAS并不一定配备了精致的可扩展和可学习的解决问题的策略,这些策略能够应对缩放型拖把带来的新的和宏伟的挑战,并不断提高各种方面的复杂性或规模,主要包括昂贵的方面,包括昂贵的方面。功能评估,许多目标,大规模搜索空间,时变环境和多任务。在不同的情况下,它需要不同的思考来设计新的强大MOEAS,以有效地解决它们。在这种情况下,对可学习的MOEAS进行的研究,以机器学习技术进行缩放的拖把,在进化计算领域受到了广泛的关注。在本文中,我们从可扩展的拖把和可学习的MOEAS的分类学开始,然后分析将拖把构成对传统MOEAS的挑战的分析。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展拖把,主要集中在三个有吸引力的有前途的方向上(即,可学习的环境选择的可学习的进化鉴别器,可学习的进化生物的可学习生殖发生器,以及可学习的进化转移,用于分享或分享或分享或进行分享或可学习的转移。不同问题域之间的经验)。在本文中提供了有关可学习的MOEAS的见解,以参考该领域的努力的一般踪迹。
translated by 谷歌翻译